GOVERNMENT OF THE DISTRICT OF COLUMBIA
HISTORIC PRESERVATION OFFICE

HISTORIC PRESERVATION REVIEW BOARD
APPLICATION FOR HISTORIC LANDMARK OR HISTORIC DISTRICT DESIGNATION

New Designation X
Amendment of a previous designation

Please summarize any amendment(s)

Property name West Heating Plant
If any part of the interior is being nominated, it must be specifically identified and described in the narrative statements.

Address 1051 29th Street NW

Square and lot number(s) Square 1193

Affected Advisory Neighborhood Commission ANC 2E

Date of construction 1946-1948 Date of major alteration(s)

Architect(s) William Dewey Foster (consulting architect)

Architectural style(s) Modern Movement/ Moderne

Original use INDUSTRY/ Heating plant

Property owner Georgetown 29K Acquisition LLC c/o The Levy Group

Legal address of property owner 1321 Wisconsin Ave, NW, Washington, DC 20007

NAME OF APPLICANT(S) DC Preservation League

If the applicant is an organization, it must submit evidence that among its purposes is the promotion of historic preservation in the District of Columbia. A copy of its charter, articles of incorporation, or by-laws, setting forth such purpose, will satisfy this requirement.

Address/Telephone of applicant(s) 1221 Connecticut Ave., NW, WDC 20036, 202.783.5144

Name and title of authorized representative Rebecca Miller, Executive Director

Signature of representative

Date 8-09-2017

Name and telephone of author of application Tisha Allen (202)783.5144

Date received 8/12/2017
H.P.O. staff

#17-20
United States Department of the Interior
National Park Service

National Register of Historic Places Registration Form

This form is for use in nominating or requesting determinations for individual properties and districts. See instructions in National Register Bulletin, How to Complete the National Register of Historic Places Registration Form. If any item does not apply to the property being documented, enter "N/A" for "not applicable." For functions, architectural classification, materials, and areas of significance, enter only categories and subcategories from the instructions.

1. Name of Property

 Historic name: West Heating Plant ______________________________________
 Other names/site number: ___
 Name of related multiple property listing:
 Georgetown Historic District ___
 (Enter "N/A" if property is not part of a multiple property listing)

2. Location

 Street & number: 1051 29th Street NW ____________________________________
 City or town: Washington, D.C. State: _______ County: _______
 Not For Publication: _______ Vicinity: _______

3. State/Federal Agency Certification

 As the designated authority under the National Historic Preservation Act, as amended,
 I hereby certify that this X nomination ___ request for determination of eligibility meets
 the documentation standards for registering properties in the National Register of Historic
 Places and meets the procedural and professional requirements set forth in 36 CFR Part 60.
 In my opinion, the property X__ meets ___ does not meet the National Register Criteria.
 I recommend that this property be considered significant at the following
 level(s) of significance:
 ___ national ___ statewide X__ local
 Applicable National Register Criteria:
 X__ A ___ B X__ C ___ D

 __
 Signature of certifying official/Title: ___________________________ Date ____________

 State or Federal agency/bureau or Tribal Government

 __
 In my opinion, the property ___ meets ___ does not meet the National Register criteria.
 Signature of commenting official: ___________________________ Date ____________

 __
 Title: ___________________________ State or Federal agency/bureau or Tribal Government
4. **National Park Service Certification**

I hereby certify that this property is:

___ entered in the National Register
___ determined eligible for the National Register
___ determined not eligible for the National Register
___ removed from the National Register
___ other (explain:) ______________________

__________________________ ________________
Signature of the Keeper Date of Action

5. **Classification**

Ownership of Property

(Check as many boxes as apply.)

Private: X

Public – Local

Public – State

Public – Federal

Category of Property

(Check only one box.)

Building(s)

District

Site

Structure

Object
Number of Resources within Property

(Do not include previously listed resources in the count)

<table>
<thead>
<tr>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- buildings
- sites
- structures
- objects

Total: 1

Number of contributing resources previously listed in the National Register: 1

(Contributing resource in the Georgetown Historic District)

6. Function or Use

Historic Functions

(Enter categories from instructions.)

- INDUSTRY/Heating Plant

- VACANT/Not in Use

Current Functions

(Enter categories from instructions.)

- VACANT/Not in Use
7. Description

Architectural Classification
(Enter categories from instructions.)
MODERN MOVEMENT/Moderne

Materials: (enter categories from instructions.)
Principal exterior materials of the property: Concrete, brick, limestone, steel

Narrative Description
(Describe the historic and current physical appearance and condition of the property. Describe contributing and noncontributing resources if applicable. Begin with a summary paragraph that briefly describes the general characteristics of the property, such as its location, type, style, method of construction, setting, size, and significant features. Indicate whether the property has historic integrity.)

Summary Paragraph
Located along Rock Creek in the Georgetown Historic District, Washington, D.C., the West Heating Plant (WHP) is a six-story industrial building that was initially designed beginning in 1940 and built between 1946 and 1948 by the Public Buildings Administration (PBA) of the Federal Works Agency (FWA). The building was constructed to supplement the Central Heating Plant (13th and C streets SW), an Art Deco-style edifice erected in 1933-1934 by the Office of the Supervising Architect of the Treasury Department, the precursor to the PBA. The six-story monumental WHP, with its streamlined facades of buff-colored brick, illustrates a shift from the Art Deco toward a more minimalist version of the Moderne style. The Central Heating Plant vigorously features rhythmically recessed and projecting wall surfaces, curved walls, and abstract imagery, but the design of the WHP is more understated with smooth wall planes, linear brick corner embellishments, and subtle architectural details. Both buildings illustrate the incorporation of stylistic modern details into the design of substantial industrial buildings. The size and massing of the WHP give the building a monumental presence near the Georgetown waterfront. The building rises above the nearby nineteenth-century structures as well as the trees that line the adjacent Rock Creek and Potomac Parkway, making the building visible from the parkway as well as from the surrounding streets.
Narrative Description

Site

The West Heating Plant occupies Square 1193 in its entirety and faces west on 29th Street NW between K Street, to the south, and the C&O Canal, to the north. Rock Creek runs along its eastern border. Because of the path of Rock Creek, the WHP site is triangular in shape and is wider in the northern portion of the site and narrower along the southern. Reinforced concrete walls with random-course rough-hewn stone cladding on the exterior enclose two sides of the yard and encircle the site, leaving a grassy buffer between the WHP and the C&O Canal and Rock Creek. A pedestrian sidewalk runs along the west side of the property along 29th Street. The walls, which measure 32 feet high, sit on top of concrete piles with a continuous pile cap. Cast stone caps the walls.

Exterior

Rising six stories above a basement, the WHP sits on a solid foundation of cast-in-place concrete perimeter wall footings with concrete foundation walls and concrete pilings. The basement level, which is partially below grade, is clad in rough-hewn irregular-coursed stone that mimics the stone of the adjacent C&O Canal and Rock Creek. The stone veneer creates a water table along the east, north, and west elevations and the east portion of the south elevation. The main block of the building is constructed of structural steel and concrete block clad in a buff-colored five-course Flemish-bond brick veneer. The vertical mass of the building is articulated by tall, vertical bands of industrial windows with cast stone lintels. The building’s bulk is further relieved by the chamfered corners of the east elevation and linear patterned brick accents on all of the building’s corners. The accents are created by alternating rows of bricks that project approximately 1 inch beyond the flush surface, producing a striated effect. The sixth story of the building is set back from the main block. Capping the roof are the exhaust stacks, which are surrounded by a brick screen. The corners of the screen are ornamented by striated brick corners, similar to the main block; however, the recesses have been filled with mortar. The stepped appearance provided by the recessed sixth floor and the screen further relieve the mass of the main block. The building has a flat roof that is covered in bituminous roofing and ornamented by dressed limestone coping. The roof that caps the fifth story has a parapet.

The primary elevation of the building (west) fronts 29th Street and serves as the monumental façade of the building. A centered recessed bay with a large 72-foot vertical band of industrial windows is the centerpiece of the façade. The ceiling of the recessed bay is clad with metal panels and a centered circular light. The streamlined effect of the bay is emphasized by its curved corners marked with header brick. On the sides of the bay on the second and third stories are spaced bricks that create a screen. Covered by the screen and not visible from the façade are metal-sash casement windows. Single-leaf metal entrance doors are located on the sides of the first story of the bay and are outlined with granite lintels and door jambs. The doors do not appear to be original. Metal lettering on the door jamb of the north door defines the entrance as “office,” and lettering on the door jamb on the south designates it as the “employees’ entrance.”
It is unknown if the lettering is original or if it was added at a later date. A stone marker on the façade commemorates the building’s construction and reads:

Harry S Truman President of the United States
Philip B Fleming Federal Works Administration
W. Englebert Reynolds Commissioner of Public Buildings
Jesse E Stanton Deputy Commissioner for Design and Construction
Gilbert Stanley Underwood Supervising Architect
WM Dewey Foster Consulting Architect
Murray M Davis Supervising Engineer
Chas H Tompkins Contractor
1946

The north elevation of the building is pierced by eight six-light metal-sash industrial awning windows on the basement and first stories and eight vertical bands of multi-light (2x17) metal-sash fixed and awning windows that light the second through fifth stories. The sixth story of the north elevation has seven four-light metal-sash awning windows, not visible because of the roof parapet. Centered on the east elevation is a wide recessed band of multi-light metal industrial windows similar to the façade. The opening has curved corners. The south elevation is fenestrated by six vertical rows of windows. Windows on the basement and first stories are six-light metal-sash awning. The northernmost window opening holds a control booth for the crane operator of the coal yard. Continuous bands of multi-light (2x17) metal-sash fixed and awning windows span the second through fifth stories. Seven four-light metal-sash awning windows pierce the sixth story but are shielded by the parapet roof of the fifth story. A metal overhead door leads out to the coal yard from the basement level of the south (rear) elevation.

Interior

The configuration of the interior of the WHP remains much the same as when the plant began operation in 1948. The majority of the interior is a large open space that spans the first through the third floors and holds the plant’s five boilers and two water softener tanks. Offices and mechanical rooms primarily occupy the western section of the building on the first through fifth floors. The perimeter and interior walls are composed of glazed tile blocks. The majority of the floors are unfinished concrete; the first floor is covered in clay tile. The metal-sash industrial windows are operable via a crank system, which is prominent along the perimeter walls. The coal handling system, installed during the building’s construction (1946-1948), remains intact and includes the skip hoists, conveyor belt system, coal scales, and coal bunkers. Reinforced concrete columns in the basement support the equipment above and the building structure. The upper floors are reinforced concrete plates supported by steel I-beams, which remain exposed. Most of the floor plates are not continuous, with the heating plant equipment rising through the open floors above, and steel-frame, open-grate catwalks constituting the remainder of the floor space. The open-grate stairs and catwalks are characteristic of the building’s interior and provide access to the boilers and the coal conveyor systems. The basement and the first floor are the exceptions and have full solid floors.
The basement of the building houses the draft fans and ash hoppers for the boilers and the water feed system. The skip hoists stand in the southwest corner of the basement and are connected to the coal conveyor system that brought coal into the building, which is still in place. The skip hoist shaft continues from the basement to the sixth story of the building. The northeast section of the basement holds a machine shop and storage and office spaces.

The main entrance to the building is located on the building's west side, facing 29th Street. The southern door, specified as an employee entrance, leads into the building and directly to the first floor, and the northern door, designated as the office entrance, provides access to the main office on the second floor. The office stairwell has marble wainscoting and a closed dog-leg stair with a curved metal handrail. The flooring of the entry appears to be large square tiles; however, it has been subsequently coated in black paint or another material and the original fabric is not apparent. A multi-light wood-paneled door leads from the main entrance vestibule into the stairwell. The employee’s entrance stairwell features a similar curved metal handrail.

The first floor of the building primarily holds the five boilers, installed in 1948, 1958, and 1968, which are arranged in rows along the north and south walls of the building. The space in the southeast corner designed for a sixth boiler, which was never built, now holds a break room built in the 1980s. Water softener tanks stand toward the southwest and northwest corners of the first floor. A control room stands in the center of the western end of the first floor, and locker rooms are located along the northwest and southwest corners. A metal stair stands north of the control room and an elevator to its south.

The second story of the building holds the building’s main office and provides access to upper portions of the boilers and water tanks. The main office stands in the center of the west side of the floor. It was renovated in the late 1990s and has been fitted with cubicles, a drop ceiling, and industrial carpeting. Similar to the second floor, the third floor also primarily provides access to the upper portions of the boilers and water tanks. Two offices and a storage room are located in the northwest corner of the floor, and a break room stands along the south well, adjacent to the elevator shaft. Metal dog-leg stairs are located on the sides of each boiler and lead up to the third floor.

The fourth and fifth floors of the building hold the coal bunkers, which span the center of the building above the boilers. The western section of the fourth floor is divided into a series of rooms that hold the electrical equipment, an electric shop, and an office. On the fifth floor the southwestern portion holds the coal handling equipment, which includes a conveyor belt system and scales for weighing the coal. The bunkers, conveyor system, and scales were installed during the construction of the building (1946-1948). A metal subfloor carries the conveyors above the coal bunkers. The precipitators for the each of the five bunkers flank the coal bunkers on the north and south sides of the fifth floor. The northwest corner of the fifth floor holds a storage room and office.

The sixth floor of the building holds the precipitators for the boilers. The northwestern corner contains the machine room for the skip hoists, installed in 1946-1948. The southwestern corner holds the coal hoppers, where the coal was unloaded from the skip hoists. The elevator ends at the sixth floor; however, stairwells lead up to the roof.
West Heating Plant Washington, D.C.
Name of Property County and State

INTEGRITY

Since its construction the WHP has undergone few alterations to its original design. The exterior of the main building remains as it was when it opened in 1948. A large portion of the coal yard, along with the crane and coal breaker house, is extant. Although the coal-burning boilers were converted to oil and later gas and upgrades were made to the electrical systems and office areas of the building, the majority of the interior has not been changed. The coal handling system, along with the skip hoists, conveyor belts, coal scales, and bunkers, remain in place as they were installed between 1946 and 1948 and are integral to the design of the building. The primary changes to the WHP include the introduction of oil tanks into the coal yard between 1973 and 1974 and the demolition of the coal/ash house circa 2005.
8. Statement of Significance

Applicable National Register Criteria
(Mark "x" in one or more boxes for the criteria qualifying the property for National Register listing.)

☐ A. Property is associated with events that have made a significant contribution to the broad patterns of our history.

☐ B. Property is associated with the lives of persons significant in our past.

☒ C. Property embodies the distinctive characteristics of a type, period, or method of construction or represents the work of a master, or possesses high artistic values, or represents a significant and distinguishable entity whose components lack individual distinction.

☐ D. Property has yielded, or is likely to yield, information important in prehistory or history.

Criteria Considerations
(Mark “x” in all the boxes that apply.)

☐ A. Owned by a religious institution or used for religious purposes

☐ B. Removed from its original location

☐ C. A birthplace or grave

☐ D. A cemetery

☐ E. A reconstructed building, object, or structure

☐ F. A commemorative property

☐ G. Less than 50 years old or achieving significance within the past 50 years
West Heating Plant

Name of Property

Areas of Significance
(Enter categories from instructions.)

ARCHITECTURE

POLITICS/GOVERNMENT

INDUSTRY

Period of Significance
1942-1968

Significant Dates
1948
1968

Significant Person
(Complete only if Criterion B is marked above.)

Cultural Affiliation

Architect/Builder
W.M. Dewey Foster (Consulting Architect)
Gilbert Stanley Underwood (Supervising Architect)
Jesse E. Stanton (Deputy Commissioner for Design and Construction)
Murray M. Davis (Supervising Engineer)
Charles H. Tompkins (Contractor)
The West Heating Plant, originally known as the West Central Heating Plant, was designed by consulting architect William Dewey Foster, working under successive Supervising Architects of the Public Buildings Administration, Louis A. Simon and Gilbert Stanley Underwood. The project’s purpose was to supplement the supply of steam heat to federal buildings provided by an already overburdened Central Heating Plant (1934; 13th and C Streets SW), itself erected to support a New Deal construction campaign that also addressed a fifteen-year backlog. A West Central Heating Plant (and the Central plant was, for a time, referred to as the East Central Heating Plant) was similarly meant to catch up to the demands of the vast expansion of the federal establishment during the Depression and to allow for future construction. It was essential to the expansion of another Underwood and Foster collaboration, a new War Department headquarters, which later became the Harry S. Truman Building, Department of State.

The heating plant was designed in 1940 and funded by Congress. The laying of pipes and some site work began in 1941, with the retaining walls and foundation laid in 1942. Work halted during World War II when the War Production Board (WPB) diverted most steel to the war effort, and funds were diverted to other projects until 1946. Construction recommenced that year, with the local Charles H. Tompkins Company as builder. Completed in late 1948, the project’s cost nearly doubled original estimates, because of inflation and additional steam mains laid. Within a couple of years, people began to refer to it as the West Heating Plant.

The building’s architect, William Dewey Foster, trained at M.I.T. and was a draftsman for several firms before hanging up his own shingle. During the Depression, he was one of a team of consulting architects hired by the Public Buildings Branch of the Treasury’s Procurement Division for the design of scores of New Deal projects. Foster is known for a series of post offices in Manhattan, the Bronx, Larchmont, New York, Great Neck, Long Island, Fresno, California, Aberdeen, South Dakota, and others, all exhibiting the range of styles applied to public buildings during the 1930s: Colonial Revival, Art Deco and “stripped classical.” Foster also designed a new headquarters for the Weather Bureau when it was transferred from the Department of Agriculture in 1940. He published several monographs, plus a series of brochures on English architecture for the Ludowici Roofing Tile Company. Largely on the strength of having headed the Historic American Buildings Survey in New York State and his restoration of the Octagon House, he was appointed one of the original members of the Old Georgetown Board. While a partner in his last firm in the 1950s, Foster defended those who appreciated traditional design and craftsmanship, and he mixed modern features and ideas about siting with formal composition and specialized spaces.
The West Heating Plant meets National Register Criteria A and C with Architecture, Politics/Government, and Industry as the Areas of Significance. Built between 1946 and 1948 under the direction of the Public Buildings Administration, the WHP was the second of two heating plants constructed to provide steam heat to the rapidly increasing number of federal buildings in Washington, D.C. The property meets National Register Criterion A for its association “with events that have made a significant contributions to the broad patterns of our history” and historical periods, groups, institutions or patterns of growth and change that contributed significantly to the development of the District. Foremost among the events and trends is the vast physical expansion of the federal establishment during the Depression, World War II and postwar. But this physical expansion ushered in new modes of architecture and engineering that influenced architectural tastes locally. The property also illustrates the perpetuation of the industrial use of lower Georgetown, whose availability provided a rationale to locate conspicuous support functions beyond the federal core that had been the focus of the McMillan Plan.

The property meets National Register Criterion C as a striking, monumental piece of architecture, classically composed, streamlined and powerful, and thoroughly up to date in its expression. It represents an ending of something older—the New Deal and Art Moderne—and the arrival of the Modern. For a city with relatively little industrial architecture, the West Heating Plant is a standout industrial building, significant to the appearance and development of the District, and is recognized alongside infrastructure landmarks such the Central Heating Plant and the Main Sewerage Pumping Station. The building was modern not only in appearance but in the engineering of its systems and its steel and masonry structure. Furthermore, it was crucial to the federal government’s planning of the nation’s capital, especially the expansion of agency headquarters in the Northwest Rectangle and elsewhere.

The building is a “significant and distinguishable entity” that possesses high artistic values despite “merely” being a type of heating plant. The building is distinctive as an individual structure and embodies characteristics of the architecture of its period, on the cusp of Modernism. Following the success of the Central Heating Plant, built in 1933-1934, particular attention was placed on the design of the West Heating Plant. The result is an industrial building that is monumental in scale but minimalist and utilitarian in design and effectively demonstrates a shift from the Art Deco style of the Central Heating Plant to the Moderne.

The period of significance extends from 1942 to 1968. Although the building was years from completion, the initial date of 1942 is justified because the concrete retaining walls and foundation had been built. The latter date recognizes a period of use of the property, important for a building significant for its history. The terminal date is when the last boiler was installed, signifying a last expansion of steam supply and predating the conversion of the coal-fired boilers to fuel oil.

1 The statement of significance summary is partially taken from the DC State Historic Preservation Office Determination of Eligibility Form for the West Heating Plant, prepared by Patti Kuhn, Architectural Historian, The Louis Berger Group, Inc., for the General Services Administration (GSA) and dated June 1, 2012.
West Heating Plant

The West Heating Plant is a contributing resource located within the boundaries of the Georgetown Historic District. The district was first established by the Old Georgetown Act on September 22, 1950, and listed in the DC Inventory of Historic Sites in 1964. In 1967 the Georgetown Historic District became a National Historic Landmark and was listed in the National Register of Historic Places. An update to the National Register form was completed and accepted by the National Register in 2003. The period of significance for the Georgetown Historic District, established in the 2003 update, runs from 1751 to 1950 and “represents a comprehensive picture of the area’s rich history . . .”\(^2\) Part of its significance relates to “the increased industrial growth and a related decline in the socio-economic status of the district in the first half of the 20th century”.\(^3\)

Narrative Statement of Significance (Provide at least one paragraph for each area of significance.)

Politics/Government: The WHP is symbolic of the rapid growth of the federal government, particularly in Washington, D.C. during the years leading up to World War II. Planned and constructed by the PBA to relieve the over-taxed Central Heating Plant, the WHP was an essential link in the system of federal buildings located within the city’s downtown core. The building was not only necessary to relieve the burden of the Central Heating Plant, but to supply heat to the burgeoning number of federal buildings erected in Washington, D.C., as part of the national defense program. Although war shortages ultimately postponed its construction, the WHP was one of the federal government’s most urgent projects after the war ended (U.S. Congress 1945). The importance of the WHP within the federal expansion efforts is exemplified in its acclaim as the most modern heating plant of its kind in the country at the time of its construction.\(^4\)

Industry: The WHP illustrates the industrial use of the Georgetown waterfront during the second quarter of the twentieth century. After the closure of the C&O Canal in 1924, port activity essentially ceased, forcing the Georgetown waterfront to diversify its interests. The city’s first zoning ordinance in 1920 designated the Georgetown waterfront as “industrial” and heavy industry, including factories, garages, and construction companies, began to occupy or replace the eighteenth century mills and warehouses along the waterfront. The site of the WHP was chosen in part for its availability, location near the newly-constructed federal buildings and the B&O Railroad, and for its industrial zoning, which follow the broad patterns of development within the Georgetown Historic District.

Architecture: The WHP meets Criterion C as it embodies the characteristics of the Moderne style, successfully interpreted for an industrial building. The building’s monumental quality,

\(^3\) Ibid.
West Heating Plant Washington, D.C.
Name of Property County and State
along with its Moderne stylistic influences, illustrate the importance the PBA placed on design, even in the construction of industrial buildings. Exemplary of the style are its clean, streamlined surfaces, rounded and embellished corners, and spans of industrial windows. The WHP’s grand scale gives the building a dominant presence that rises above the narrow Georgetown streets and is visible over the tree line from Rock Creek and Potomac Parkway.

Hailed as the most modern heating plant of its kind in the country at the time of its construction, the intact interior and mechanical systems of the building further the building’s significance under Criterion C. The industrial significance of the building is expressed in its interior layout, materials, and machinery including its three-story open floor plan, exposed I-beams, concrete flooring, metal stairs and catwalks, tile-block walls, boilers, water softeners, and the coal-conveyor system, which remain in place.

Historical Background:

Completed in 1948, the WHP was designed by Washington, D.C., and Public Buildings Administration (PBA) consulting architect William Dewey Foster (1890-1958). The new heating plant, located at the corner of 29th and K streets NW in Georgetown, was built to supply heat to existing and future government buildings in downtown Washington and to alleviate the stress on, as well as provide support for the Central Heating Plant, located at 13th and C streets SW. Although Congress appropriated the funds for the building in 1940, World War II delayed its construction. Planning resumed in 1945, and construction recommenced in 1946. The project was completed in 1948 at the cost of $7.8 million. Louis A. Simon (1867-1958) and later Gilbert Stanley Underwood (1890-1961), Supervising Architects for the PBA under the Federal Works Agency (FWA), oversaw the project, and Charles H. Tompkins Company of Washington, D.C. served as the contractors.

Planning and Construction
Plans for the WHP began in 1940 when Congress appropriated $3.9 million for the construction of the new plant, which was necessary to relieve the steam load of the Central Heating Plant, constructed in 1933-1934, and provide steam heat to federal office buildings in downtown Washington. According to the Washington Evening Star, the new plant was “a necessity not only for serving the needs of additional space facilities which are developing in connection with the national defense program but also a supplement to the present plant in taking over part of the load in the event of a breakdown.”

Initially, the federal government chose a site on Square 1172, along the Potomac River on the Georgetown waterfront for the new WHP. Agreements on the site could not be reached, and ultimately Square 1193 became the chosen location for the plant. The government had acquired part of Square 1193 in 1938 when it purchased land formerly owned by the C&O Canal Company for the Chesapeake and Ohio (C&O) Canal National Historic Site. The Department of the Interior transferred the former C&O Company land to the FWA in 1941. The same year, the

federal government purchased the remaining parcels in Square 1193 from the Baltimore & Ohio (B&O) Railroad. Additional land acquisition along with rising construction costs increased the estimated budget for the project, and in December 1941 Congress approved an additional $3.1 million, ultimately augmenting the project’s budget to $7 million.

Construction commenced in March 1942 and included the retaining walls along Rock Creek and the pouring of the plant’s foundations. The United States’ entry into World War II halted the WHP’s construction in September 1942 because steel was needed for battleship construction. The project remained uncompleted until 1945, when planning resumed with urgency, as the Central Heating Plant alone was serving over 130 buildings. Rising costs once again resulted in a budget increase of 10 percent. The final budget for the WHP was $7,750,000. Construction resumed in 1946 and the plant began operation in July 1948. At the time of its completion, the Washington Post hailed the building as the “most modern heating plant of its kind in the country”.

Design, Architects, and Administration
In the decade prior to World War II, the city of Washington experienced tremendous growth as a result of President Franklin Delano Roosevelt’s New Deal programs, which greatly expanded the number of federal workers and programs. The Department of the Treasury’s Supervising Architect’s Office designed and oversaw construction of new federal buildings to house the influx of workers. For the construction of the WHP, plans fell under the jurisdiction of the PBA of the FWA. Established in 1939, FWA consolidated the Public Buildings Branch (Treasury), the Branch of Buildings Management (National Park Service), the Bureau of Public Roads, the United States Housing Authority, the Federal Emergency Administration of Public Works, and Works Progress Administration. Under the supervision of the FWA, the PBA took over the previous role of the Department of the Treasury, and the Supervising Architect’s Office and the architectural staff, including Supervising Architect Louis A. Simon, transferred to the new agency. The agency described itself as “primarily an organization for building,” and its architects and engineers were largely concerned with “the provision of facilities, economics of construction, and the role of construction projects in providing for the common welfare”.

Following the role of the Supervising Architect’s Office, the PBA retained its authority over the design and construction of public buildings and a group of “well-known designers and consulting

6 Public Buildings Administration, Title Papers 1838-1943, West Central Heating Plant, Entry 80, Box 359, National Archives and Records Administration, College Park, Maryland.
William Dewey Foster, one of the consulting architects for the PBA, was responsible for the design of the WHP. Foster, born in Kirksville, Missouri, in 1890, received BA and MS degrees in architecture from the Massachusetts Institute of Technology. After working for several prominent firms in New York City, Foster established the firm of Foster and Vassar in 1921. Foster left private practice in 1934 to work in Washington as a consulting architect with the Treasury Department and later the PBA. At the time of his death in 1958, Foster was a partner in the firm of Howe, Foster and Snyder, which he first organized in 1947 as Howe & Foster with George L. Howe. During his eight years with the Public Buildings Administration, Foster is best known for the former War Department Building, now known as the Harry S Truman Building, State Department Headquarters (1941), in Washington, which he designed with Gilbert Stanley Underwood.

Supervising Architect Louis A. Simon (1933-1941) oversaw the design of the WHP. When Simon took over the role as Supervising Architect in 1933, he had already worked for the Supervising Architect’s Office for more than four decades and was well known in the architectural community. As Supervising Architect, Simon’s architectural philosophy was prominently reflected in the buildings designed under his direction. Simon’s contemporaries described his work as being “characterized by an effort toward simplicity and restraint and the attainment of pleasing results, by a studied consideration of mass and proportion, rather than by excess of elaboration or non-functional expression, such as characterized by some of the early work of the Supervising Architect’s Office”. Simon’s influence can be seen in the balanced proportions and reserved ornamentation of the WHP.

By the time construction on the WHP resumed after World War II, the project was under the auspices of Supervising Architect Gilbert Stanley Underwood (1943-1949). Underwood, perhaps best known for his rustic designs for the National Parks, became a consulting architect for the Treasury Department beginning in the 1930s. In this role Underwood designed more than 20 U.S. Post Offices and two federal buildings, not including his collaboration with Dewey for the War Department Building.

The U.S. Commission of Fine Arts (CFA) also played a role in the design of the WHP. The passage of the Shipstead-Luce Act in 1930 required the CFA to review the designs of buildings in the District of Columbia adjacent to certain public buildings and grounds. Because the WHP was located adjacent to Rock Creek and Potomac Parkway, its designs were subject to approval.
by the CFA. On November 8, 1940, CFA approved the design of the WHP.16 A year after the completion of the WHP, President Truman established the General Services Administration (GSA), which consolidated the FWA and the PBA along with the National Archives Establishment, Bureau of Federal Supply and the Office of Contract Settlement, and the War Assets Administration. The WHP fell under the jurisdiction of the new agency, which was tasked with administering supplies and providing workplaces for federal employees. The WHP remains under the administration of GSA’s Public Building Service today.

Upgrades

In January 1970 GSA’s District Heating System reached a peak hourly demand of 1,295,000 pounds of steam. At that time the system heated 112 buildings with a total floor area of 35 million gross square feet housing approximately 110,000 federal workers. Although some buildings formerly served by the system had been demolished, the newly constructed buildings were much larger, adding to the stress on the system.17

The federal government passed the Clean Air Act in 1970, authorizing the development of comprehensive federal and state regulations to limit emissions. By 1972 the District of Columbia government had additionally signed an agreement with two environmental groups to immediately prosecute violators of city air pollution laws, “without regard to whether the sources believed to be in violation are owned or operated by the District of Columbia or the government of the United States.”18 Previously the District of Columbia government had provided violation notices, but few were prosecuted.19 Complaints had been made about pollution from the WHP as early as 1971 by Martha Mitchell, wife of Attorney General John N. Mitchell. Mitchell, who lived in the Watergate (2600 block of Virginia Avenue NW), contacted the District of Columbia government regarding the black smoke coming from the plant, not knowing that it was run by the federal government and helped heat her husband’s office at the Justice Department.20

To comply with air pollution control requirements and to improve plant operation, GSA awarded a contract in 1972 to convert all five boilers from coal to oil; however, GSA canceled portions of the contract in 1973 because a national policy was implemented to conserve oil and use coal, a result of the 1973 oil embargo. The conversion of Boilers 3 and 5 was already underway at the time of the contract termination, and therefore these two boilers were successfully converted to burn No. 6 fuel oil.21

21 Pope, Evans and Robbins, Operating Manual for West Heating Plant, 1-1; Steele, Final Environmental Impact Statement, 2.
Complaints regarding air pollution continued, and by 1976 the District of Columbia had filed a lawsuit against GSA, claiming that both the WHP and the Central Heating Plant violated air and water pollution regulations. An Environmental Impact Statement for boiler conversion and plant modifications was prepared in 1978. In 1982 Boilers 3 and 5 were converted to natural gas, and Boilers 1, 2, and 4 followed almost 10 years later in 1993. By 1994 WHP was a natural gas and fuel oil firing facility and coal was no longer officially permitted to be burned at WHP. In 1996 oil firing was added to Boilers 1 and 2. Although the Central Heating Plant remains in use, GSA terminated the heating capabilities at the WHP in 2000 because of increasing costs for maintenance and upgrades that outweighed the usefulness of the building.

Operation

Boilers 1 and 2 were installed during the initial construction of the building in 1948 and were manufactured by the Henry Vogt Machine Company. Boiler 4, also manufactured by Henry Vogt, was installed in 1950. Boilers 3 and 5, manufactured by the Wickes Boiler Company, were installed in 1968. The boilers are almost identical and are water tube, sectional header-type boilers designed for bituminous coal firing with underfeed stokers. Boilers 1, 2, and 4 used Taylor underfeed stokers, and Boilers 3 and 5 used spreader stokers manufactured by the Detroit Stoker Company. The design of each boiler allowed a maximum pressure of 400 pounds per square inch gauge (psig) and had a capacity to generate 220,000 pounds of saturated steam per hour with 212-degree Fahrenheit feed water.

Prior to 1973, all of the five boilers of the WHP operated on bituminous coal. Coal was delivered via the B&O Railroad, which ran parallel to K Street along the Georgetown waterfront. A coal and ash house (demolished circa 2005) was located on the south side of K Street adjacent to the railroad. The coal was unloaded and moved by a conveyor system through a tunnel under K Street. Once on the WHP property, the coal was distributed to one of two locations. Coal for future use was stored in the coal yard, adjacent to the WHP. Coal for immediate use continued on the conveyor, which ran along the western side of the yard, into the coal breaker house, located on the northwest side of the main building. A crane, located in the coal yard and manufactured by Link Belt, was used to reclaim the stored coal stored in the yard for boiler use.

The crane operator sat in a booth located in the northern first-story window bay on the west elevation. The crane operated on a cable, which encircled the perimeter wall of the yard.

24 Pope, Evans and Robbins, *Existing Systems Data and Evaluation for Boiler Replacement*, 3-2; 4-1.
Once in the coal breaker house, the coal traveled through a coal crusher, manufactured by Pennsylvania Crusher, that had a capacity of 150 tons of coal per hour. It was then loaded onto a skip hoist that brought the coal to the sixth floor. The WHP had four skip hoists, two of which were manufactured by Beaumont Birch and had a capacity of 74 tons per hour, and two by Sauerman, which had a capacity of 75 to 150 tons per hour. The coal was then emptied from the skip hoists into coal hoppers that carried the coal to the handling area on the fifth floor. The coal was then weighed by one of two Merrick scales and transported by belt conveyors, also manufactured by Link Belt, to the coal bunkers. Gravity transferred the coal in the bunkers to the hoppers at each of the coal-burning boilers. The coal was then fed onto the boiler grates by plunger-type stokers. In 1970 the coal handling system had a capacity of 150 tons per hour with a storage capacity of 16,000 tons in the yard and 1,800 tons in the bunkers.

Between 1972 and 1973, four oil tanks were erected along the south side of the coal yard to provide fuel to the oil-converted boilers. Trucks or railcars delivered the fuel oil, which was unloaded and pumped to the bulk storage oil tanks. The four storage tanks had a capacity of approximately 800,000 gallons. The oil was pumped from the storage tanks on an as-needed basis and replenished from a day oil tank located in the unused coal bunker space at the upper level of the boiler area. The day oil tank pumped oil to the oil-fired boilers and excess oil returned to the day tank.

The ash handling system removed bottom ash from the coal-burning boilers by washing the bottom of the boilers with water and pumping the ash-water mixture to dewatering bins. The water was drained off and recycled, and the collected ash was removed from the plant by truck. Suspended ash particles were removed from the boiler exit gases and collected in hoppers of electrostatic precipitators or baghouses. The collected ash was periodically removed from the hoppers by pneumatic systems, mixed with the wet bottom ash or collected in a dry state in an ash silo. The ash was then removed by a dustless unloader into a truck for removal.

At maximum continuous operation, the five boilers generated 222,000 pounds of steam per hour. The generated steam fed into a 20-inch main steam header. The main header had two auxiliary steam header take-offs that supplied heat to the WHP. The bulk of the steam was routed through two 20-inch mains that connected with the steam distribution system.

The steam generation system of the WHP, together with the Central Heating Plant, supplied steam heating via steam pipes to 110 to 150 buildings in downtown Washington. The steam was distributed at 250 psig and pressure was reduced at the individual buildings.
9. Major Bibliographical References

Bibliography (Cite the books, articles, and other sources used in preparing this form.)

Main Source:

Additional Sources:

Public Buildings Administration [PBA]. Record Group 121, Title Papers 1838-1943, West Central Heating Plant, Entry 80, Box 359. National Archives and Records Administration, College Park, Maryland.

West Heating Plant Washington, D.C.
Name of Property County and State

Previous documentation on file (NPS):

____ preliminary determination of individual listing (36 CFR 67) has been requested
____ previously listed in the National Register
____ previously determined eligible by the National Register
____ designated a National Historic Landmark
____ recorded by Historic American Buildings Survey #____________
____ recorded by Historic American Engineering Record # __________
____ recorded by Historic American Landscape Survey # __________

Primary location of additional data:
___X_ State Historic Preservation Office
____ Other State agency
____ Federal agency
____ Local government
____ University
____ Other
 Name of repository: ________________________________

Historic Resources Survey Number (if assigned): __________

10. Geographical Data

Acreage of Property 1.97

Use either the UTM system or latitude/longitude coordinates

Latitude/Longitude Coordinates
Datum if other than WGS84: ____________________
(enter coordinates to 6 decimal places)
1. Latitude: 38.906421 N Longitude: 77.06332 W

2. Latitude: Longitude:

3. Latitude: Longitude:

4. Latitude: Longitude:

Or
West Heating Plant

Datum (indicated on USGS map):

☐ NAD 1927 or ☐ NAD 1983

1. Zone: Easting: Northing:

2. Zone: Easting: Northing:

3. Zone: Easting: Northing:

4. Zone: Easting: Northing:

Verbal Boundary Description (Describe the boundaries of the property.)

The boundary of the West Heating Plant coincides with Square 1193, which is a roughly triangular parcel that is bounded on the west by 29th Street and on the south by K Street.

Boundary Justification (Explain why the boundaries were selected.)

The nominated property includes the entire square historically associated with the West Heating Plant.

11. Form Prepared By

name/title: Tisha Allen
organization: DC Preservation League
street & number: 1221 Connecticut Avenue, NW Suite 5A
city or town: Washington, D.C. state: DC zip code: 20036
e-mail tisha@dcpreservation.org
telephone: (202) 783-5144
date: 11/13/2013; revised 6/15/2015
West Heating Plant
Name of Property

Additional Documentation

Submit the following items with the completed form:

- **Maps:** A USGS map or equivalent (7.5 or 15 minute series) indicating the property's location.

- **Sketch map** for historic districts and properties having large acreage or numerous resources. Key all photographs to this map.

- **Additional items:** (Check with the SHPO, TPO, or FPO for any additional items.)

Photographs
Submit clear and descriptive photographs. The size of each image must be 1600x1200 pixels (minimum), 3000x2000 preferred, at 300 ppi (pixels per inch) or larger. Key all photographs to the sketch map. Each photograph must be numbered and that number must correspond to the photograph number on the photo log. For simplicity, the name of the photographer, photo date, etc. may be listed once on the photograph log and doesn’t need to be labeled on every photograph.

Photo Log

Name of Property: West Heating Plant
City or Vicinity: Washington
County: State: DC
Photographer: Patti Kuhn, The Louis Berger Group, Inc.

Date Photographed: 2012

Description of Photograph(s) and number, include description of view indicating direction of camera:

Photo # and View
1. West Heating Plant, northeast corner, looking southwest
2. Façade (west) and south elevation, looking northeast
3. Main entrance bay, looking east
4. View of main entrance bay
5. View of stone marker on the façade
6. South elevation, looking northeast
7. View of perimeter wall and south elevation, looking northwest
8. East elevation and perimeter wall, looking west
9. North elevation, looking southeast
10. View of WHP from Godey Lime Kilns, looking west
West Heating Plant Washington, D.C.
Name of Property County and State

11. View of roof and stack screen, looking east
12. View of coal yard, looking north toward coal breaker house
13. View of coal breaker house, looking northeast
14. View of oil tanks from roof, looking south
15. View of office entrance stairwell
16. View of Boiler 5 from first floor
17. View of crank for window operation
18. Operating machinery for skip hoist, sixth floor
19. Stairwell to roof, illustrating metal stairs and glazed tile block walls

Paperwork Reduction Act Statement: This information is being collected for applications to the National Register of Historic Places to nominate properties for listing or determine eligibility for listing, to list properties, and to amend existing listings. Response to this request is required to obtain a benefit in accordance with the National Historic Preservation Act, as amended (16 U.S.C.460 et seq.).

Estimated Burden Statement: Public reporting burden for this form is estimated to average 100 hours per response including time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding this burden estimate or any aspect of this form to the Office of Planning and Performance Management. U.S. Dept. of the Interior, 1849 C. Street, NW, Washington, DC.
West Heating Plant, 1051 29th Street, NW, Washington, D.C.
USGS Quad Map Washington West
West Heating Plant

Name of Property

Aerial View of West Heating Plant
Key to Photographs
HARRY S TRUMAN
PRESIDENT OF THE UNITED STATES

PHILIP B FLEMING
FEDERAL WORKS ADMINISTRATOR

W ENGLEBERT REYNOLDS
COMMISSIONER OF PUBLIC BUILDINGS

JESSE E STANTON
DEPUTY COMMISSIONER FOR DESIGN AND CONSTRUCTION

GILBERT STANLEY UNDERWOOD
SUPERVISING ARCHITECT

WM DEWEY FOSTER
CONSULTING ARCHITECT

MURRAY M DAVIS
SUPERVISING ENGINEER

CHAS H. TOMPKINS CO
CONTRACTOR

1946