Comprehensive Transportation Review

Wardman Park Redevelopment

Washington, DC

December 6, 2022

Prepared by:

3914 Centreville Road Suite 330 Chantilly, VA 20151 T 703.787.9595

Suite 1010

1140 Connecticut Ave NW

Washington, DC 20036

T 202.296.8625

225 Reinekers Lane Suite 750 Alexandria, VA 22314 T 703.721.3044 4951 Lake Brock Drive Suite 250 Glen Allen, VA 23060 T 804.362.0578

www.goroveslade.com

This document, together with the concepts and designs presented herein, as an instrument of services, is intended for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization by Gorove/Slade Associates, Inc., shall be without liability to Gorove/Slade Associates, Inc.

CONTENTS

E	xecutive Summary	1
Ir	troduction	4
	Purpose of Study	4
	Project Summary	4
	Contents of Study	5
S	tudy Area Overview	8
	Major Transportation Features	8
	Future Projects	11
Ρ	roject Design	16
	Site Access and Circulation	16
	Loading and Trash	17
	Vehicular Parking	18
	Bicycle and Pedestrian Facilities	19
	Transportation Demand Management	19
Т	ravel Demand Assumptions	36
	Mode Split Methodology	36
	Trip Generation Methodology	36
т	raffic Operations	38
	Study Area, Scope, and Methodology	38
	Vehicular Analysis Results	41
	Mitigation Measures	42
т	ransit Facilities	60
	Existing Transit Service	60
	Planned Transit Service	60
	Site-Generated Transit Impacts	61
Ρ	edestrian Facilities	65
	Pedestrian Study Area	65
	Pedestrian Infrastructure	65
	Site-Generated Pedestrian Impacts	66
В	icycle Facilities	70
	Existing Bicycle Facilities	70
	Planned Bicycle Improvements	70
	Proposed Bicycle Improvements	71
	Site-Generated Bicycle Impacts	71

Safety Analysis	75
Summary of Safety Analysis	75
Potential Impacts	75
Summary and Conclusions	76

LIST OF APPENDICES

Appendix A – Finalized DDOT CTR Scoping Form	
Appendix B – Truck Turning Maneuvers	
Appendix C – Mode Split and Trip Generation Information	

- Appendix D Existing Turning Movement Counts
- Appendix E LOS Descriptions
- Appendix F Existing (2022) Capacity Analysis Worksheets
- Appendix G Background Development Trips
- Appendix H Future (2025) Conditions without Development Capacity Analysis Worksheets
- Appendix I Future (2025) Conditions with Development Capacity Analysis Worksheets

LIST OF FIGURES

Figure 1: Project Site	6
Figure 2: Site Aerial	7
Figure 3: Summary of Walk and Bike Scores	10
Figure 4: Project Location and Transportation Facilities	13
Figure 5: Major Local Transportation Facilities	14
Figure 6: Background Developments	15
Figure 7: Site Plan – Ground Floor	21
Figure 8: Access and Circulation Plan	22
Figure 9: Loading and Internal Building Routing	23
Figure 10: Existing Curbside Management	24
Figure 11: Proposed Curbside Management	25
Figure 12: Calvert Street NW Fire Truck – Inbound	26
Figure 13: Calvert Street NW Fire Truck – Outbound	27
Figure 14: Calvert Street NW SU-40 – Inbound	28
Figure 15: Calvert Street NW SU-40 – Outbound	29
Figure 16: Calvert Street NW SU-30 – Inbound	
Figure 17: Calvert Street NW SU-30 – Outbound	31
Figure 18: Woodley Road NW Fire Truck – Inbound	
Figure 19: Woodley Road NW Fire Truck – Outbound	
Figure 20: 24 th Street NW Fire Truck – Inbound	34
Figure 21: 24 th Street NW Fire Truck – Outbound	35
Figure 22: Study Area Intersections	43
Figure 23: Existing Lane Configuration and Traffic Control	44
Figure 24: Background Lane Configuration and Traffic Control	45
Figure 25: Total Future Lane Configuration and Traffic Control	46
Figure 26: Existing Peak Hour Traffic Volumes	47
Figure 27: Background Growth Peak Hour Traffic Volumes	48
Figure 28: Background Developments Peak Hour Traffic Volumes	49
Figure 29: Background Peak Hour Traffic Volumes	50
Figure 30: Outbound and Inbound Trip Distribution	51
Figure 31: Site-Generated Peak Hour Traffic Volumes	
Figure 32: Total Future Peak Hour Traffic Volumes	53
Figure 33: Existing Transit Facilities	63
Figure 34: Transitshed from Project Site	64
Figure 35: Walkshed from Project Site	67
Figure 36: Existing Pedestrian Facilities	68
Figure 37: Future Pedestrian Facilities	69
Figure 38: Existing Bicycle Facilities	72

Figure 39: Future Bicycle Facilities	73
Figure 40: Bikeshed from Project Site	74

Table 1: Zipcar Locations	
Table 2: Parking Supply Calculations	18
Table 3: Summary of Residential Mode Split Data	36
Table 4: ITE Multi-Modal Trip Generation by Use	37
Table 5: Net Vehicular Trip Generation	
Table 6: Summary of Background Trip Generation	41
Table 7: Applied Annual and Total Growth Rates	41
Table 8: LOS Results	54
Table 9: v/c Comparison	
Table 10: Queuing Results (in feet)	58
Table 11: Local Bus Route Information	
Table 12: WMATA Recommended Bus Stop Amenities	
Table 13: Bus Stop Inventory	
Table 14: Sidewalk Requirements	66

Executive Summary

The following report is a voluntary Comprehensive Transportation Review (CTR) for the Wardman Park Redevelopment Large Tract Review (LTR) located at Square 2132, Lot 854, in Northwest, Washington, DC.

The purpose of this CTR is to evaluate whether the project will have a detrimental impact on the transportation network surrounding the site. This evaluation is based on a technical comparison of the existing, background, and future conditions. This report concludes that **the project will not have a detrimental impact** on the surrounding transportation network assuming that all planned site design elements and Transportation Demand Management (TDM) plan strategies are implemented.

Proposed Project

The site is located in the Woodley Park neighborhood of Northwest, Washington, DC and is bounded by Woodley Road NW to the north, Calvert Street NW to the south, and residential buildings to the east and west. The proposed project will replace the existing Wardman Park Marriott, a now-closed hotel complex containing 1,152 guest rooms and 195,000 square feet of event space, including 95,000 square feet of exhibit space, with two (2) buildings containing up to 875 residential units.

Vehicular access to the below-grade parking garage is proposed from curb cuts along Woodley Road NW, Calvert Street NW and 24th Street NW. Curb cuts were reduced in size and number where possible while maintaining shared access between the proposed project and adjacent properties. One (1) existing curb cut will be eliminated along Woodley Road NW, resulting in a net of three (3) curb cuts that provide access for the proposed project. The remaining curb cut along Woodley Road NW and the existing curb cut along 24th Street NW cannot be removed as they provide access to adjacent properties through access easement agreements and fire truck access for the buildings; however, both curb cuts will be improved to meet DDOT and DEM standards. Given the limited property frontage on Calvert Street NW, the curb cut has been narrowed as much as possible while allowing for fire truck access and has been relocated as far east as possible to maximize separation between the existing curb cut on the adjacent property to the west, a significant improvement over the existing conditions.

- The Woodley Road NW curb cut provides access to the existing below-grade garage on the north end of the site and the building lobbies for the proposed project.
- The Calvert Street NW curb cut provides access to loading for the west building, parking access to the belowgrade garage, and access to The Woodley apartment building.
- The 24th Street NW curb cut provides access to loading for the east building, parking access to the below-grade garage, and access to Wardman Tower condominium building. Pick-up/drop-off activity will primarily occur within the loop adjacent to the building lobbies, accessed via Woodley Road NW.

The proposed redevelopment will provide a total of four (4) 30foot loading berths for both buildings, two (2) accessible via Calvert Street NW for the west building and two (2) accessible via 24th Street NW for the east building. All truck backing maneuvers will occur within the site along private roadways, allowing for head-in/head-out access to and from the public roadway network. The number of loading berths meets all zoning and DDOT dimensional requirements.

The proposed development will satisfy the 2016 zoning requirements and DCMR 18-1214 requirements for bicycle parking by including a total of at least 372 long-term bicycle parking spaces and 64 short-term bicycle parking spaces. The project will supply long-term bicycle parking in secure locations within the below-grade parking garage and short-term bicycle parking along the perimeter of the site near building entrances. The vehicular and bicycle parking will also meet the practical needs of the project's residents.

In summary, the proposed project will consist of the following:

- Up to 875 residential units in two (2) buildings on site;
- The elimination of one (1) existing curb cut on Woodley Road NW;
- Three (3) improved curb cuts one (1) each on Woodley Road NW, Calvert Street NW, and 24th Street NW;
- Four (4) 30-foot loading berths with head-in/head-out movements across public space;
- 624 proposed vehicle parking spaces and 289 existing spaces to remain in a below-grade garage of which 40 spaces are provided for the Wardman Tower per the existing easement agreement; and

 At least 372 long-term and 64 short-term bicycle parking spaces, exceeding the long-term bicycle parking requirements and satisfying the short-term bicycle parking requirements, as laid out in the Zoning Regulations of 2016 (ZR16) and DCMR 18-1214.

Multi-Modal Overview

Trip Generation

The Wardman Park Redevelopment is transit-, pedestrian-, and bicycle-accessible. The project is expected to generate new trips on the surrounding transportation network across all modes during the AM and PM peak hours.

The AM peak hour trip generation is projected to include 196 vehicle trips per hour, 83 transit trips per hour, seven (7) bicycle trips per hour, and nine (9) pedestrian trips per hour. The PM peak hour trip generation is projected to include 178 vehicle trips per hour, 75 transit trips per hour, six (6) bicycle trips per hour, and nine (9) pedestrian trips per hour.

The existing hotel on-site is now closed. As such, no trips are generated by the site under existing conditions. However, the hotel was previously very active and generated a considerable number of trips. In comparison, it is expected that the redevelopment of the site to residential use will be a less intensive land use and will generate fewer vehicular trips than previously.

Transit

The development site is well-served by transit. It is located less than 0.1 miles from the Woodley Park-Zoo/Adams Morgan Metrorail station, which is served by WMATA bus routes and the DC Circulator.

Several planned or proposed transit projects will improve transit access to the site, including nearby Transit Priority Corridors proposed in *moveDC*, the District's long-range transportation plan.

The site is expected to generate a manageable number of transit trips, and the existing service can accommodate these new trips.

Pedestrian

The site is surrounded by a well-connected pedestrian network. Despite some incidences of curb ramps or sidewalks that are missing or do not meet standards, overall, there is a wellconnected pedestrian network surrounding the site.

The proposed development will improve the overall pedestrian environment on site by improving pedestrian infrastructure at curb cuts for the site and providing open space on the north side of the site and between the buildings.

Residents of the site will have pedestrian access to/from the Woodley Park-Zoo/Adams Morgan Metrorail station from both buildings. Building A (the east building) will have pedestrian access directly via the 24th Street NW access. Building B (the west building) will have pedestrian access via the pedestrian path along the southern end of the Building A, which connects the internal courtyard to the 24th Street NW access. The courtyard will be open to residents of the site only and will not be used as a public pedestrian connection. The open space within the courtyard between the buildings will be recessed below grade to distinguish it as private space available to residents only. Pedestrian access to the Metrorail station for existing properties will not be impacted by the proposed project.

The site is expected to generate a manageable number of pedestrian trips, and the existing pedestrian facilities can accommodate these new trips.

Bicycle

The site has access to several on- and off-street bicycle facilities.

The site is expected to generate a manageable number of bicycle trips, and the existing bicycle facilities can accommodate these new trips.

The development will include long-term bicycle parking in the below-grade garage that exceeds zoning requirements and short-term bicycle parking along the perimeter of the site that meets DDOT and zoning requirements.

Vehicular

The site is accessible from principal arterial roadways such as Connecticut Avenue NW with nearby access to Massachusetts Avenue NW. These roadways provide connectivity to I-395 and the Capital Beltway (I-495) that surrounds Washington, DC and its inner suburbs in Virginia and Maryland, as well as to the District core. Minor arterials, such as Cleveland Avenue NW and Calvert Street NW, collectors, and local roads can be used to access the site directly.

In order to determine the project's impact on the transportation network, future conditions were analyzed with and without the development based on the number of trips the site is expected to generate. Intersection analyses were performed to obtain the average delay and queue a vehicle will experience. These average delays and queues were compared to the acceptable levels of delay set by DDOT standards as well as existing queues to determine if the project will negatively impact the study area.

The analysis concluded that no mitigation was required as the proposed development does not significantly impact the surrounding road networks.

Safety

A qualitative review of study area intersections was performed to identify areas of concern due to vehicular, pedestrian, and bicycle interactions.

The analysis concluded that no study intersections are considered hazardous/high crash intersections. However, based on a review of facilities in the area, one (1) intersection was identified for further evaluation to enhance the multi-modal network surrounding the site. The evaluation of these intersections is as follows:

Connecticut Avenue & Calvert Street, NW

While this intersection is not considered a hazardous/high crash intersection based on DDOT criteria, this location carries a high level of vehicle traffic and pedestrian activity and was identified based on a high concentration of vehicular crashes in the "Crashes in DC" database over the last three (3) years. Intersection geometry or operational changes are not recommended at this time as the site-generated traffic at this intersection is minimal and not expected to degrade safety.

Transportation Demand Management Plan

Per the DDOT CTR guidelines, the goal of TDM measures is to reduce the number of single occupancy vehicles and vehicle ownership within the District. The promotion of various programs and existing infrastructure includes maximizing the use of transit, bicycle, and pedestrian facilities. DDOT has outlined expectations for TDM measures in its CTR guidelines, and this project has proposed a robust TDM plan based on these guidelines. In addition to DDOT's standard TDM elements, the proposed TDM plan also includes the provisions from Subtitle C §707.3 (excluding the GAR provision), per DDOT's request.

Summary and Recommendations

This report concludes that the proposed development will have a manageable impact on the surrounding transportation and roadway network assuming that all planned site design elements are implemented.

The Wardman Park Redevelopment has several positive design elements that minimize potential transportation impacts, including:

- The site's close proximity to transit, particularly the Woodley Park-Zoo/Adams Morgan Metrorail station;
- The site's proximity to existing bicycle infrastructure, including the bicycle lanes on Calvert Street NW and Woodley Place NW and the Rock Creek Trail;
- The site being located in a well-connected pedestrian network, with access to the Woodley Park-Zoo/Adams Morgan Metrorail station from both proposed buildings;
- The inclusion of secure long-term bicycle parking that exceeds zoning requirements;
- The installation of short-term bicycle parking spaces along the perimeter of the site that meets zoning requirements;
- The improvement of remaining curb cuts along the site's perimeter, improving the existing pedestrian environment;
- The provision of a bicycle repair station in each long-term bicycle parking storage room.
- The Funding and installing of two (2) 19-dock Capital Bikeshare (CaBi) station with 12 bikes each and fund oneyear of maintenance and operations costs.
- The removal of an existing curb cut on Woodley Road NW; and
- A TDM plan that reduces the demand of singleoccupancy, private vehicles during peak period travel times or shifts single-occupancy vehicular demand to offpeak periods.

Introduction

This report is a Comprehensive Transportation Review (CTR) reviewing the transportation aspects of the Wardman Park Redevelopment. The site, shown in Figure 1 and Figure 2, is located at Square 2132, Lot 854, in the Wardman Park neighborhood in Northwest, DC. The site is currently zoned RA-2 for majority of the site and is zoned RA-4 for the southern portion of the site.

Purpose of Study

The purpose of this report is to:

- Review the transportation elements of the proposed project and demonstrate that it conforms to DDOT's general policies of promoting non-automobile modes of travel and sustainability.
- Provide information to DDOT and other agencies on how the proposed project will influence the local transportation network. This report accomplishes this by identifying the potential trips generated by the proposed project on all major modes of travel and where these trips will be distributed on such network.
- 3. Determine whether the proposed project will lead to adverse impacts on the local transportation network.

Project Summary

The Wardman Park Redevelopment project will replace the existing Wardman Park Marriott, a now-closed hotel complex containing 1,152 guest rooms and 195,000 square feet of event space, including 95,000 square feet of exhibit space into a residential use development.

The site is bounded by Woodley Road NW to the north, Calvert Street NW to the south, an apartment building to the west, and the historic Wardman Tower to the east. The proposed project will consist of the following:

- Up to 875 residential units in two (2) buildings on site;
- The elimination of one (1) existing curb cut on Woodley Road NW;
- Three (3) improved curb cuts one (1) each on Woodley Road NW, Calvert Street NW, and 24th Street NW;
- Four (4) 30-foot loading berths with head-in/head-out movements across public space;

- 624 proposed vehicle parking spaces and 289 existing spaces to remain in a below-grade garage of which 40 spaces are provided for the Wardman Tower per the existing easement agreement; and
- At least 372 long-term and 64 short-term bicycle parking spaces, meeting the long-term bicycle parking requirements and satisfying the short-term bicycle parking requirements, as laid out in the Zoning Regulations of 2016 (ZR16) and DCMR 18-1214.

Vehicular access to the below-grade parking garage is proposed from curb cuts along Woodley Road NW, Calvert Street NW and 24th Street NW. Curb cuts were reduced in size and number where possible while maintaining shared access between the proposed project and adjacent properties. One (1) existing curb cut will be eliminated along Woodley Road NW, resulting in a net of three (3) curb cuts that provide access for the proposed project. The remaining curb cut along Woodley Road NW and the existing curb cut along 24th Street NW cannot be removed as they provide access to adjacent properties through access easement agreements and fire truck access for the buildings; however, both curb cuts will be improved to meet DDOT and DEM standards. Given the limited frontage on Calvert Street NW, the curb cut has been as narrowed as much possible while allowing for fire truck access and has been relocated as far east as possible from the existing curb cut on the adjacent property to the west to maximize separation, a significant improvement over the existing conditions.

- The Woodley Road NW curb cut provides access to the existing below-grade garage on the north end of the site and the building lobbies for the proposed project.
- The Calvert Street NW curb cut provides access to loading for the west building, parking access to the belowgrade garage, and access to The Woodley apartment building.
- The 24th Street NW curb cut provides access to loading for the east building, parking access to the below-grade garage, and access to Wardman Tower condominium building. Pick-up/drop-off activity will primarily occur within the loop adjacent to the building lobbies, accessed via Woodley Road NW.

The proposed redevelopment will provide a total of four (4) 30foot loading berths for both buildings, two (2) accessible via Calvert Street NW for the west building and two (2) accessible via 24th Street NW for the east building. All truck backing maneuvers will occur within the site along private roadways, allowing for head-in/head-out access to and from the public roadway network. The number of loading berths meets all zoning and DDOT dimensional requirements.

Primary pedestrian access to the development will be from the pedestrian walkways connecting to Woodley Road NW. Pedestrian access to the development will also be provided from 24th Street NW and Calvert Street NW.

The proposed development will improve the overall pedestrian environment on site by improving pedestrian infrastructure at curb cuts for the site and providing and providing open space on the north side of the site and between the buildings.

Residents of the site will have pedestrian access to/from the Woodley Park-Zoo/Adams Morgan Metrorail station from both buildings. Building A (the east building) will have pedestrian access directly via the 24th Street NW access. Building B (the west building) will have pedestrian access via the pedestrian path along the southern end of the Building A, which connects the internal courtyard to the 24th Street NW access. The courtyard will be open to residents of the site only and will not be used as a public pedestrian connection. The open space within the courtyard between the buildings will be recessed below grade to distinguish it as private space available to residents only. Pedestrian access to the Metrorail station for existing properties will not be impacted by the proposed project.

Existing bicycle facilities are present near the site. These facilities include bicycle lanes along Calvert Street NW and Woodley Place NW which provide connections to the Rock Creek Trail and the wider bicycle network. A total of at least 372 long-term and 64 short-term bicycle parking spaces will be provided for the development, exceeding zoning requirements. Long-term spaces will be located in secure bicycle storage rooms in the below-grade garage. Bicycle repair stations will be provided for use in one of the secure bicycle storage rooms in each building. Short-term spaces will be located in highly accessible locations along the perimeter of the site, near building entrances. The nearest Capital Bikeshare (CaBi) station is located approximately 0.1 miles southeast from the site, at the southwest corner of Calvert Street NW and Connecticut Avenue NW intersection.

Contents of Study

This report contains nine (9) chapters as follows:

<u>Study Area Overview</u>

This chapter reviews the area near and adjacent to the project and includes an overview of the site location.

Project Design

This chapter reviews the transportation components of the proposed project, including the site plan and access. This chapter also contains the proposed Transportation Demand Management (TDM) plan for the project.

<u>Travel Demand Assumptions</u>

This chapter outlines the travel demand of the proposed project. It summarizes the proposed trip generation of the project.

Traffic Operations

This chapter provides a summary of the existing roadway facilities and an analysis of the existing and future roadway capacity in the study area. This chapter highlights the vehicular impacts of the project, including presenting mitigation measures for minimizing impacts as needed.

Transit

This chapter summarizes the existing and future transit service adjacent to the site, reviews how the project's transit demand will be accommodated, outlines impacts, and presents recommendations as needed.

Pedestrian Facilities

This chapter summarizes existing and future pedestrian access to the site, reviews walking routes to and from the proposed project, outlines impacts, and presents recommendations as needed.

Bicycle Facilities

This chapter summarizes existing and future bicycle access to the site, reviews the quality of cycling routes to and from the proposed project, outlines impacts, and presents recommendations as needed.

Safety Analysis

This chapter summarizes the potential safety impacts of the project. This includes a qualitative review of existing and proposed safety features surrounding the site.

Summary and Conclusions This chapter presents a summary of the recommended mitigation measures by mode and presents overall

findings and conclusions.

Figure 1: Project Site

Figure 2: Site Aerial

Study Area Overview

This chapter reviews the study area and includes an overview of the site location, including a summary of the major transportation characteristics of the area and of future regional projects.

This chapter concludes:

- The site is surrounded by an extensive regional and local transportation system that will connect the project's residents to the rest of the District of Columbia and surrounding areas.
- The site is served by public transportation with access to local Metrobus lines and Metrorail.
- There is bicycle infrastructure in the vicinity of the site, with connectivity to east-west and north-south bicycle facilities.
- Pedestrian conditions are generally good and provide sufficient connectivity, particularly along walking routes to major destinations and transit.

Major Transportation Features

Overview of Regional Access

As shown in Figure 4, the site has ample access to regional, vehicular, and transit-based transportation options that connect the site to destinations within the District, Virginia, and Maryland.

The site is accessible from principal arterial roadways such as Connecticut Avenue NW with nearby access to Massachusetts Avenue NW. These roadways provide connectivity to I-395 and the Capital Beltway (I-495) that surrounds Washington, DC and its inner suburbs in Virginia and Maryland, as well as to the District core. Minor arterials, such as Cleveland Avenue NW and Calvert Street NW, collectors, and local roads can be used to access the site directly.

The site is located within an approximately two (2) minute walk or less than 0.1 miles from the Woodley Park-Zoo/Adams Morgan Metrorail station (served by the Red Line). The Red Line travels south from Shady Grove, MD through Bethesda, MD and the District core before turning north at Union Station through Silver Spring, MD to Glenmont, MD. Connections can be made at the Gallery PI-Chinatown and Metro Center Metrorail stations to access the five (5) other Metrorail lines, allowing access to locations in Virginia and Maryland. Overall, the site has access to several regional roadways and transit options, making it convenient to travel between the site and destinations in the greater Washington metropolitan area.

Overview of Local Access

There are a variety of local transportation options near the site that serve vehicular, transit, walking, and bicycling trips. The site is directly served by a local vehicular network that includes principal arterial roadways such as Connecticut Avenue NW as well as the minor arterial Cleveland Avenue NW and Calvert Street NW.

The Metrobus system and the DC Circulator provide local transit service near the site, including connections to several neighborhoods within the District and additional Metrorail stations. As shown in Figure 5, there are two (2) Metrobus routes and one (1) DC Circulator route that serve the site. Within approximately a quarter mile walk of the site, there are 13 bus stops. The routes serving these bus stops connect the site to areas of the District along Columbia Road NW, Connecticut Avenue NW, and Wisconsin Avenue NW. A detailed review of transit stops within approximately a quarter mile walk of the site is provided in the Transit Facilities chapter of this report.

The site is in an area with several on-street bicycle facilities. Bicycle lanes are present along Calvert Street NW and Woodley Place NW with connections to the Rock Creek Trail, which provides regional connections from Rock Creek Valley in Washington, DC to Montgomery County, MD. Using the available connections along the on-street and off-street routes within the study area, bicyclists have access to a number of regional and local bicycle facilities. To accommodate bicyclists, the project will provide long-term and short-term bicycle parking facilities as discussed in detail in the Project Design chapter. A detailed review of existing, planned, and proposed bicycle facilities and connectivity is provided in the Bicycle Facilities chapter.

Anticipated pedestrian routes, such as those to public transportation stops, schools, and community amenities, provide adequate pedestrian facilities; however, there are some sidewalks, including those along the perimeter of the site, that do not meet DDOT standards due to narrow buffer or sidewalk widths. A detailed review of existing and proposed pedestrian access and infrastructure is provided in the Pedestrian Facilities chapter of this report. Overall, the site is surrounded by a robust local transportation network that allows for efficient transportation options via transit, bicycle, walking, or vehicular modes.

Carsharing

Two (2) companies provide carsharing service in the District of Columbia: Free2Move and Zipcar. Both services are private companies that provide registered users access to a variety of automobiles. Free2Move operates a point-to-point model that allows customers to pick up a vehicle at a location and drop it off at any non-restricted metered curbside parking space or Residential Parking Permit (RPP) location in the defined "Home Area." Zipcar operates a reserved-space model where customers are required to borrow from and return vehicles to the same reserved carsharing space. Currently, there are two (2) locations within approximately a quarter mile walk and one (1) location within a half mile walk. The locations, number of available vehicles, and walking distances are listed in Table 1.

Table 1: Zipcar Locations

Zipcar Location	Number of Vehicles	Walking Distance
2401 Calvert Street NW	1 vehicle	0.2 miles (4 minutes)
2615 Woodley Place NW	1 vehicle	0.2 miles (5 minutes)
2901 Connecticut Avenue NW	1 vehicle	0.3 miles (7 minutes)
Total	3 vehicles	-

Micromobility

As of December 2022, micromobility service in the District is provided by eight (8) private dockless companies operating ebikes and electric scooters (e-scooters). These include two (2) companies operating e-bikes (HelBiz and Jump) and six (6) companies operating e-scooters (Bird, Lime, Lyft, Razor, Skip, and Spin). These dockless vehicles are provided by private companies that give registered users access to a variety of ebike and e-scooter options. These devices are used through each company-specific mobile phone application. Many dockless vehicles do not have designated stations where pick-up/drop-off activities occur like with Capital Bikeshare. They are typically parked in public space, most commonly in the "furniture zone" or the portion of the sidewalk between where people walk and the curb, often where other street signs, street furniture, trees, and parking meters are found. In addition to DDOT's program, dockless programs exist in Arlington County, Fairfax County, the City of Fairfax, the City of Alexandria, and Montgomery County. The project's proposed short-term and long-term bicycle parking spaces on-site will make bicycle and scooter travel a more attractive option for those traveling to and from the site.

Walk & Bike Score

Walkscore.com is a website that provides scores and rankings for the walking, biking, and transit conditions within neighborhoods of the District. Based on this website, the site is in the Woodley Park neighborhood. Using the existing address (2660 Woodley Road NW), the site has a walk score of 76 (or "Very Walkable"), a transit score of 67 (or "Good Transit"), and a bike score of 75 (or "Very Bikeable"). Maps of the surrounding area's bike and walk scores can be found in Figure 3. The following conclusions can be made based on the data obtained from Walkscore.com:

- The site is situated in an area with a "Very Walkable" walk score as most errands can be accomplished on foot;
- The site is situated in an area with a "Good Transit" transit score due to its proximity to Metrobus routes, a DC Circulator route, and the Woodley Park-Zoo/Adams Morgan Metrorail station; and
- The site is situated in an area with a "Very Bikeable" bike score due to its proximity to a number of bicycle facilities including bicycle lanes along Calvert Street NW and Woodley Place NW.

Overall, the site and surrounding neighborhood have very good pedestrian, transit, and bicycle accessibility. Additionally, other planned developments and roadway improvements will help increase pedestrian, transit, and bicycle accessibility in the neighborhood.

Figure 3: Summary of Walk and Bike Scores

Future Projects

There are several District initiatives and approved developments located near the site. These planned and proposed projects are summarized below.

moveDC

As the District of Columbia grows, so must the transportation system, specifically in a way that expands transportation choices while improving the reliability of all transportation modes. In order to meet this challenge and capitalize on future opportunities, DDOT maintains and regularly updates its long-range transportation plan, *moveDC*, to identify transit challenges and opportunities and to recommend investments.

The *moveDC* 2014 update outlined recommendations by mode with the goal of having them complete by 2040, including improvements to the District's transportation system such as:

- 70 miles of high-capacity transit (streetcar or bus);
- 200 miles of on-street bicycle facilities or trails;
- Sidewalks on at least one side of every street;
- New street connections;
- Road management/pricing in key corridors and the Central Employment Area;
- A new downtown Metrorail loop;
- Expanded commuter rail; and
- Water taxis.

As part of the *moveDC* 2021 update, DDOT has developed mobility priority networks to show where investments in safety and mobility improvements will take place for specific modes of transportation. The Transit Priority Network highlights streets where infrastructure improvements such as dedicated transit lanes, better transit stops, and/or special intersection treatments for buses will be prioritized to improve transit travel times and reliability. The Bicycle Priority Network includes bicycle priority routes from the *moveDC* 2014 update and additions from recent planning and public engagement efforts. In direct relation to the proposed project, the Transit and Bicycle Priority Networks include:

 Transit priority corridors along Columbia Road NW, Connecticut Avenue NW, and Wisconsin Avenue NW, covering a segment of both the existing Metrobus routes and the DC Circulator near the site; and biovelo facilitios without

Page 11

 Future planned on-street bicycle facilities without committed funding along Cleveland Avenue NW, Connecticut Avenue NW, Wisconsin Avenue NW, and Cathedral Avenue NW.

DC Comprehensive Plan

The *DC Comprehensive Plan* is a high-level guiding document that sets a positive, long-term vision for the District through the lens of its physical growth and change. The existing Comprehensive Plan was enacted in 2006 and updated in 2011 and again in 2021 with the DC Council passing the updated plan in May 2021. The new plan officially became law on August 21, 2021.

The Comprehensive Plan's Transportation Element contains the following policies which are supported by the proposed development:

- "Policy T-1.1.4: Transit-Oriented Development. Support transit-oriented development by investing in pedestrianoriented transportation improvements at or around transit stations, major bus corridors, and transfer points.
 Encourage development projects to build or upgrade the pedestrian and bicycle infrastructure leading to the nearest transit stop to create last-mile connections.
 Pedestrian movements and safety should be prioritized around transit stations."
- "Policy T-1.2.3: Discouraging Auto-Oriented Uses.
 Discourage certain uses, like "drive-through" businesses or stores with large surface parking lots, along key boulevards and pedestrian streets, and minimize the number of curb cuts in new developments. Curb cuts and multiple vehicle access points break-up the sidewalk, reduce pedestrian safety, and detract from pedestrianoriented retail and residential areas."
 - The proposed project's location provides good access to public transportation options. In particular, the site is within a two (2) minute walk of the Woodley Park-Zoo/Adams Morgan Metrorail station (served by the Red Line). The proposed project will improve the existing auto-oriented use by reducing the number of curb cuts currently serving the site and by providing more long-term bicycle parking than required by zoning.

Vision Zero Action Plan

DDOT's *Vision Zero Action Plan* is the implementation strategy of DC's Vision Zero Initiative, which commits to reaching zero fatalities and serious injuries to travelers of DC's transportation system by the year 2024. The *Action Plan* is based on DC interagency workgroups, public input, local transportation data and crash statistics, and national and international best practices. Workgroups identified the guiding themes for the *Vision Zero Action Plan* and the goals of the DC government. The *Action Plan* focuses on the following themes:

- Create Safe Streets
- Protect Vulnerable Users
- Prevent Dangerous Driving
- Be Transparent and Responsive

Strategies within each theme assign lead and supporting agencies responsible for the planning and implementation of each program. The plan also calls for partners external to District government to ensure accountability and aid in implementation.

The proposed development supports DC's overall Vision Zero goals by removing an existing curb cut, narrowing remaining curb cuts where possible, and providing improved pedestrian facilities along the site's boundary.

Connecticut Avenue NW Reversible Lane Safety and Operations Study

The Connecticut Avenue Reversible Lane Operations and Safety Study was initiated in December 5019. The study area included the 2.7-mile-long Connecticut Avenue corridor in Northwest Washington, DC. The corridor is a diverse mix of residential, commercial, and educational uses. The primary study area consisted of Connecticut Avenue from Legation Street to Calvert Street and included 24 signalized intersections. The goals and benefits for the Connecticut Avenue NW Reversible Lane Safety and Operations Study project included the following:

- Reduce crashes and conflict points and enhance safety for all modes and roadway users;
- Consider additional mobility options along the corridor, such as protected bicycle lanes;
- Assess the feasibility of removing the Reversible Lane Operation; and

 Determine the feasibility of reducing capacity along Connecticut Avenue and that effect on adjacent roadways.

Planned Developments

There is one (1) potential development project in the vicinity of the site. For the purpose of this analysis and consistent with DDOT and industry standards, only approved developments expected to be completed prior to the proposed development with an origin or destination within the study area should be included. Of the background developments considered, this project was ultimately included given the proximity of the development impacting the study area intersections. Trip generation calculations for the background project are included in the Technical Attachments. The development is shown in Figure 6 and described below.

2607 Connecticut Avenue NW

2607 Connecticut Avenue NW is a residential development providing 28 studio apartments in a five (5) story plus cellar building. This development was analyzed using the ITE's *Trip Generation Manual*, 11th Edition and is expected to generate six (6) peak hour trips in the morning and five (5) peak hour trips in the afternoon. This development is expected to be complete prior to the completion of the Wardman Park Redevelopment and was thus included in the analysis.

Figure 4: Project Location and Transportation Facilities

Figure 5: Major Local Transportation Facilities

Figure 6: Background Developments

Project Design

This chapter reviews the transportation components of the project, including the proposed site plan and access points. It includes descriptions of the project's vehicular access, loading, parking, bicycle and pedestrian facilities, and Transportation Demand Management (TDM) plan.

The Wardman Park Redevelopment project will replace the existing Wardman Park Marriott, a now-closed hotel complex containing 1,152 guest rooms and 195,000 square feet of event space, including 95,000 square feet of exhibit space into a residential use development.

The site is bounded by Woodley Road NW to the north, Calvert Street NW to the south, an apartment building to the west, and the historic Wardman Tower to the east. The proposed project will consist of the following:

- Up to 875 residential units in two (2) buildings on site;
- The elimination of one (1) existing curb cut on Woodley Road;
- Three (3) improved curb cuts one (1) each on Woodley Road NW, Calvert Street NW, and 24th Street NW;
- Four (4) 30-foot loading berths with head-in/head-out movements across public space;
- 624 proposed vehicle parking spaces and 289 existing spaces to remain in a below-grade garage of which 40 spaces are provided for the Wardman Tower per the existing easement agreement; and
- At least 372 long-term and 64 short-term bicycle parking spaces, meeting the long-term bicycle parking requirements and satisfying the short-term bicycle parking requirements, as laid out in the Zoning Regulations of 2016 (ZR16) and DCMR 18-1214.

Figure 7 shows an overview of the development program and site plan elements.

Site Access and Circulation

Pedestrian Access

Primary pedestrian access to the development's building lobbies will be from the pedestrian walkways connecting to Woodley Road NW and Calvert Street NW. Pedestrian access to the development will also be provided from 24th Street NW and Calvert Street NW. Open space will be provided on the north side of the site in front of the building on Woodley Road NW.

Residents of the site will have pedestrian access to/from the Woodley Park-Zoo/Adams Morgan Metrorail station from both buildings. Building A (the east building) will have pedestrian access directly via the 24th Street NW access. Building B (the west building) will have pedestrian access via the pedestrian path along the southern end of the Building A, which connects the internal courtyard to the 24th Street NW access. The courtyard will be open to residents of the site only and will not be used as a public pedestrian connection. The open space within the courtyard between the buildings will be recessed below grade to distinguish it as private space available to residents only.

A circulation plan showing expected pedestrian routes is shown in Figure 8.

Bicycle Access

Bicycle access to the development will be from Woodley Road NW, Calvert Street NW, and 24th Street NW. Bicyclists will access the long-term bicycle storage rooms in the below-grade garage. Bicycle repair stations will be provided for use in one of the secure bicycle storage rooms in each building. At least 372 secure, long-term bicycle spaces will be available in in the bicycle storage rooms, exceeding ZR16 requirements. At least 64 short-term bicycle parking spaces will be provided along the site's street frontages in highly accessible locations near building entrances, meeting ZR16 requirements. The Applicant will coordinate with DDOT to select locations for these racks in public space.

Vehicular Access

Vehicular access to the below-grade parking garage is proposed from curb cuts along Woodley Road NW, Calvert Street NW and 24th Street NW. Curb cuts were reduced in size and number where possible while maintaining shared access between the proposed project and adjacent properties. One (1) existing curb cut will be eliminated along Woodley Road NW, resulting in a net of three (3) curb cuts that provide access for the proposed project. The remaining curb cut along Woodley Road NW and the existing curb cut along 24th Street NW cannot be removed as they provide access to adjacent properties through access easement agreements and fire truck access for the buildings; however, both curb cuts will be improved to meet DDOT and DEM standards. Given the limited property frontage on Calvert Street NW, the curb cut has been narrowed as much as possible while allowing for fire truck access and has been relocated as far east as possible to maximize separation between the existing curb cut on the adjacent property to the west, a significant improvement over the existing conditions.

- The Woodley Road NW curb cut provides access to the existing below-grade garage on the north end of the site and the building lobbies for the proposed project.
- The Calvert Street NW curb cut provides access to loading for the west building, parking access to the below-grade garage, and access to The Woodley apartment building.
- The 24th Street NW curb cut provides access to loading for the east building, parking access to the below-grade garage, and access to Wardman Tower condominium building. Pick-up/drop-off activity will primarily occur within the loop adjacent to the building lobbies, accessed via Woodley Road NW.

The proposed redevelopment will provide a total of four (4) 30foot loading berths for both buildings, two (2) accessible via Calvert Street NW for the west building and two (2) accessible via 24th Street NW for the east building. All truck backing maneuvers will occur within the site along private roadways, allowing for head-in/head-out access to and from the public roadway network. Truck routing to and from the site will be focused on streets designated as best suited to routing goods and trucks through the District as shown in the Freight Priority Network of the *moveDC* 2021 update. These include Connecticut Avenue NW and Wisconsin Avenue NW.

The locations of parking garage access and loading facilities are shown in Figure 7. A circulation plan showing expected vehicular routes is shown in Figure 8.

Curbside Management

Existing curbside uses were reviewed within approximately two (2) blocks of the site as shown in Figure 10. Existing curbside uses are largely dedicated to on-street parking and bicycle lanes along both sides of Calvert Street NW.

The proposed development will include a 45-foot "No Parking" zone at the Calvert Street NW building entrance. Removal of one (1) existing curb cut on Woodley Road NW will increase the available curbside space available, compared to existing conditions. Otherwise, the existing curbside designations will not be changed as a result of the proposed development. Proposed curbside conditions are shown in Figure 11.

Loading and Trash

Loading

The proposed loading facilities will accommodate all moveins/move-outs and delivery demand for residential tenants without any detrimental impact to the surrounding network.

As described above, all loading activities will take place within the site. No back-in maneuvers from public streets will be necessary for trucks to access their loading docks.

Per ZR16 requirements, any residential development providing 50 or more dwelling units is required to provide one (1) loading berth and one (1) service/delivery space. As part of the proposed development, a total of four (4) 30-foot loading berths, are proposed for both the buildings, two (2) in the west building and two (2) in the east building. This exceeds the ZR16 requirements of a minimum of two (2) loading berths and two (2) service/delivery space for both buildings.

The project is expected to generate at least seven (7) loading trips per day, consisting of daily trash removal services, mail and parcel delivery, and residential move-in/-out as follows:

- One (1) trash removal truck;
- Approximately two (2) residential move-in or -out trucks (conservatively calculated using an average of 18 months average turnover per unit); and
- Approximately six (6) general deliveries, including mail delivery trucks;

Figure 9 shows the vehicle paths to loading areas as well as internal loading paths from those loading areas to the tenants and site occupants of each building. The loading facilities provided by the project will be sufficient to accommodate this demand.

DDOT standards stipulate that truck movements for a site should be accommodated without back-in movements through public space. The project has been designed to accommodate all backing maneuvers associated with loading activity within the project site. As a result, all truck movements to and from public space will be head-in/head-out. Truck turning maneuvers into and out of the loading areas were created using AutoTURN and are provided in Figure 12 through Figure 21, as well as in the Technical Attachments.

Trash

Trash pick-up will be incorporated into a proposed trash pick-up scheme in which maintenance staff will move trash containers

Page 18

from each building's trash room to the nearest loading area where a trash vendor will stop to collect from the containers. No trash will be stored in public space.

Vehicular Parking

The parking provided by the site has been designed to accommodate on-site parking needs, and to additionally satisfy ZR16 requirements and DDOT preferences, as shown in Table 2. The project will include approximately 624 newly proposed vehicle parking spaces and 289 existing parking spaces in the below-grade garage of which 40 spaces are provided for the Wardman Tower per the existing easement agreement. Eight (8) surface spaces will also be provided for short-term parking.

Per DDOT's request, the Applicant has agreed to meet the provisions of Subtitle C §707.3 (excluding the GAR provision) using DDOT's interpretation of that subsection being triggered when vehicular parking is double the minimum outlined in Subtitle C §701.5, and not three-times the minimum. Those provisions are reflected in the proposed TDM plan.

Consistent with DDOT guidance, the Applicant proposes providing at least 18 electric vehicle parking stations.

Electric Vehicle Readiness Amendment Act of 2020

Per the Electric Vehicle Readiness Amendment Act of 2020, for building permits issues after January 1, 2022, all new construction or substantial improvement of commercial buildings and multi-unit buildings that have three (3) or more automobile off-road parking spaces are required to include EV make-ready infrastructure to accommodate the future installation of EV charging for at least 20 percent of parking spaces.

As of December 2022, the law has not gone into effect because it has not been funded. The Applicant is aware that this requirement may go into effect prior to pulling their building permits.

Electric Vehicle (EV) Parking

Table 2: Parking Supply Calculations

Section 1.6 of the DDOT CTR guidelines recommends that one (1) out of every 50 spaces be served by an EV charging station.

Land Use	Size	Vehicle Parking Spaces				
		Proposed		DDOT- Preferred	ZR16	
		Supply ¹	Ratio ¹	Rate ²	Supply ³	Ratio ¹
Residential (du)	Up to 875	881 ⁴	1.0	0.25	145-289	0.33/du in excess of 4 du

¹ Supply is measured in spaces, while ratio is measured in spaces/du.

² Rates are proximate to Metrorail and Priority Transit with the development being located within an eighth mile of the Woodley Park-Zoo/Adams Morgan Metrorail station and within a quarter mile of a DC Circulator route along Calvert Street NW.

³ The ZR16 minimum vehicle parking supply is calculated based on the table of Subtitle C § 701.5 with and without taking a 50 percent reduction based on the proposed development's proximity to Metrorail and priority transit. This reduction is allowed but not required.

⁴ 40 spaces are provided for the Wardman Tower per the existing easement agreement. Those spaces are not included in the 881 proposed spaces.

Bicycle and Pedestrian Facilities

Bicycle Facilities

The proposed development will make bicycle related improvements over existing conditions in and around the site.

Bicycle Parking

The project will provide a total of at least 372 long-term and 64 short-term bicycle parking spaces. The project's bicycle parking facilities meet and exceed ZR16 bicycle parking requirements. Showers and lockers will not be provided as they are not required by ZR16 for the uses proposed for the project. Bicycle parking requirements by land use are as follows:

Long-Term (171 total spaces required)

• Residential, multiple dwelling unit – one (1) space for every three (3) dwelling units; after the first 50 spaces, additional spaces are calculated at one (1) for every six (6) dwelling units; 171 spaces required.

While ZR16 requires 171 long-term bicycle spaces, DCMR 18-1214 requires the provision of one (1) long-term bicycle space per three (3) residential dwelling units, bringing the required amount of long-term bicycle parking to 292 long-term spaces.

The project will provide at least 372 long-term spaces of which a minimum of 19 spaces will be designed for longer cargo/ tandem bikes, a minimum of 37 spaces will be designed with electrical outlets for charging of electric bikes and scooters, and a minimum of 146 spaces will be placed horizontally on the floor. The long-term spaces will be located in secure bicycle storage rooms. Additionally, at least one (1) bicycle repair station will be provided within one of the bicycle storage rooms in each building.

Short-Term (44 total spaces required)

• Residential, multiple dwelling unit – one (1) space for each 20 dwelling units; 44 spaces required.

A total of 64 short-term bicycle parking spaces (32 racks) will be provided around the perimeter of the site in highly accessible locations near building entrances. The Applicant is coordinating with DDOT to select locations for these racks in public space.

Pedestrian Facilities

The proposed development will improve the overall pedestrian environment on site by eliminating or narrowing existing curb cuts where possible, improving pedestrian infrastructure at curb cuts for the site, and providing open space on the north side of the site and between the buildings.

Residents of the site will have pedestrian access to/from the Woodley Park-Zoo/Adams Morgan Metrorail station from both buildings. Building A (the east building) will have pedestrian access directly via the 24th Street NW access. Building B (the west building) will have pedestrian access via the pedestrian path along the southern end of the Building A, which connects the internal courtyard to the 24th Street NW access. The courtyard will be open to residents of the site only and will not be used as a public pedestrian connection. The open space within the courtyard between the buildings will be recessed below grade to distinguish it as private space available to residents only. Pedestrian access to the Metrorail station for existing properties will not be impacted by the proposed project.

Existing and proposed pedestrian facilities are detailed in the Pedestrian Facilities chapter.

Transportation Demand Management

Transportation Demand Management (TDM) is the application of policies and strategies used to reduce travel demand or redistribute demand to other times or spaces. TDM focuses on reducing the demand of single-occupancy, private vehicles during peak period travel times or on shifting single-occupancy vehicular demand to off-peak periods. In addition to DDOT's standard TDM elements, the proposed TDM plan includes the provisions from Subtitle C §707.3 (excluding the GAR provision), per DDOT's request. The following is a list of TDM strategies the Applicant proposes for the Wardman Park Redevelopment:

Residential TDM Plan

- Unbundle the cost of vehicle parking from the lease or purchase agreement for each residential unit and charge a minimum rate based on the average market rate within a quarter mile.
- Identify Transportation Coordinators for the planning, construction, and operations phases of development. The Transportation Coordinators will act as points of contact with DDOT, goDCgo, and Zoning Enforcement and will provide their contact information to goDCgo.
- Transportation Coordinator will conduct an annual commuter survey of building employees and residents onsite, and report TDM activities and data collection efforts to goDCgo once per year.
- Transportation Coordinator will develop, distribute, and market various transportation alternatives and options to

newsletters or communications.

- Transportation Coordinator will subscribe to goDCgo's residential newsletter and receive TDM training from goDCgo to learn about the transportation conditions for this project and available options for implementing the TDM Plan.
- Provide welcome packets to all new residents that should, at a minimum, include the Metrorail pocket guide, brochures of local bus lines (Circulator and Metrobus), carpool and vanpool information, CaBi coupon or rack card, Guaranteed Ride Home (GRH) brochure, and the most recent DC Bike Map. Brochures can be ordered from DDOT's goDCgo program by emailing info@godcgo.com.
- Provide residents who wish to carpool with detailed carpooling information and will be referred to other carpool matching services sponsored by the Metropolitan Washington Council of Governments (MWCOG) or other comparable service if MWCOG does not offer this in the future.
- Post all transportation and TDM commitments on building website, publicize availability, and allow the public to see what has been promised.
- Offer a SmarTrip card and one (1) complimentary Capital Bikeshare coupon good for a free ride to every new resident.
- Provide at least 64 short- and 372 long-term bicycle parking spaces. 44 short- and 292 long-term bicycle parking spaces are required by ZR16 and DCMR 18-1214.
- Additional short- and long-term bicycle parking spaces above ZR16 requirements, as specified in bullet above.
- Long-term bicycle storage rooms will accommodate nontraditional sized bikes including cargo, tandem, and kids' bikes, with a minimum 19 of spaces be designed for longer cargo/tandem bikes (10 feet by 3 feet), a minimum of 37 spaces will be designed with electrical outlets for the charging of electric bikes and scooters, and a minimum of 146 spaces will be placed horizontally on the floor. There will be no fee to the residents or employees for usage of the bicycle storage room and strollers will be permitted to be stored in the bicycle storage room.
- Install a minimum of 18 electric vehicle (EV) charging stations.

- Apart from the existing easement for 40 parking spaces with Wardman Tower, will not lease unused parking spaces to anyone aside from tenants of the building unless the other building(s) have no on-site parking (e.g., will not lease to other nearby office employees, singlefamily home residents, or sporting events).
- Offer an annual CaBi membership to each resident for the first three (3) years after the building opens.
- Provide a bicycle repair station in each long-term bicycle parking storage room.
- Provide one (1) collapsible shopping cart (utility cart) for every 50 residential units, for a total of 18 to encourage residents to walk to the grocery store and run errands.
- Fund and install two (2) 19-dock Capital Bikeshare (CaBi) station with 12 bikes each and fund one-year of maintenance and operations costs.
- Hold a transportation event for residents, employees, and members of the community once per year for a total of three (3) years. Examples include resident social, walking tour of local transportation options, goDCgo lobby event, transportation fair, WABA Everyday Bicycling seminar, bicycle safety/information class, bicycle repair event, etc.).
- To encourage teleworking, provide an on-site co-working space available for free to residents 24 hours per day, 7 days per week. Access to a copier and internet services will be included.
- Designate 10 parking spaces in the vehicle parking garage for car-sharing services to use with right of first refusal. If an agreement has not been reached with one of these services to occupy all of the dedicated spaces, one
 (1) year of membership to Capital Bikeshare for each resident after the building has opened will be provided.
- Fund 26 trees to be planted within public space in the Ward in which the site is located, at a location to be determined by the Urban Forestry Division of the District Department of Transportation, and of a species and size consistent with industry standards for street trees.

Figure 7: Site Plan – Ground Floor

Figure 8: Access and Circulation Plan

Page 22

Figure 9: Loading and Internal Building Routing

Figure 10: Existing Curbside Management

Figure 11: Proposed Curbside Management

Figure 12: Calvert Street NW Fire Truck – Inbound

Figure 13: Calvert Street NW Fire Truck – Outbound

Figure 14: Calvert Street NW SU-40 – Inbound

Figure 15: Calvert Street NW SU-40 – Outbound

Figure 16: Calvert Street NW SU-30 – Inbound

Figure 17: Calvert Street NW SU-30 – Outbound

Figure 18: Woodley Road NW Fire Truck – Inbound

Figure 19: Woodley Road NW Fire Truck – Outbound

Figure 20: 24th Street NW Fire Truck – Inbound

Figure 21: 24th Street NW Fire Truck – Outbound

Travel Demand Assumptions

This chapter outlines the transportation demand for the Wardman Park Redevelopment. It summarizes the projected trip generation of the proposed project by mode, which forms the basis for the chapters that follow. These assumptions were vetted and approved by DDOT as a part of the scoping process for the study.

Mode Split Methodology

Mode split (also called mode share) is the percentage of travelers using a particular type (or mode) of transportation when traveling. The main sources of mode split information for this report were Census data using Census Tracts, Traffic Analysis Zones (TAZs), and data contained in the WMATA Ridership Survey.

Residential Mode Splits

Residential mode splits were primarily based on Census data at the tract and TAZ level¹ for residents that live near the site, data contained in Table 10 of WMATA's 2005 Development-Related Ridership Survey and MWCOG's 2019 State of the Commute Survey Report. Table 3 summarizes the data that were used to establish residential mode split assumptions for this report.

Table 3: Summary of Residential Mode Split Data

			Mode	9		
Source	SOV	Carpool	Transit	Bike	Walk	WFH/ Other
TAZ 20074	30%	7%	40%	3%	8%	12%
Tract 5.01	27%	1%	44%	6%	8%	14%
State of the Commute ¹	31%	2%	47%	17	7%	-
WMATA Ridership Survey ²	ł	54%	36%	10)%	-
WMATA Ridership Survey ³	;	39%	49%	12	2%	-
Residential Mode Split	7 0%		25%	2% 3%		-

¹ Only includes District residents

² Residential sites average within ½ mile of station

³Residential sites average for Suburban-Inside the Beltway

Trip Generation Methodology

Traditionally, weekday peak hour trip generation is calculated based on the methodology outlined in the Institute of Transportation Engineers' (ITE) *Trip Generation Manual*, 11th

Edition. This methodology was supplemented to account for the urban nature of the project (the *Trip Generation Manual* provides data for non-urban, low transit use sites) and to generate trips for multiple modes, as vetted and approved by DDOT.

Proposed Trip Generation

Proposed trip generation was calculated based on the following:

- Residential:
 - o ITE Land Use 221, Multifamily Housing (Mid-Rise)

The calculated trips were then split into different modes using assumptions outlined in the Mode Split Methodology section of this report.

As shown in Table 4, the proposed development is expected to generate trips on the surrounding network across all modes. The AM peak hour trip generation is projected to generate 196 vehicle trips per hour, 83 transit trips per hour, seven (7) bicycle trips per hour, and nine (9) pedestrian trips per hour. The PM peak hour trip generation is projected to generate 178 vehicle trips per hour, 75 transit trips per hour, six (6) bicycle trips per hour, and nine (9) pedestrian trips per hour. The Saturday peak hour trip generation is projected to include 247 vehicle trips per hour, 104 transit trips per hour, eight (8) bicycle trips per hour, and 12 pedestrian trips per hour. Detailed calculations are provided in the Technical Attachments.

Existing Trip Generation

The existing site consists of a hotel that is now closed. The existing hotel on-site is now closed. As such, no trips are generated by the site under existing conditions. However, the hotel was previously very active and generated a considerable number of trips. In comparison, it is expected that the redevelopment of the site to residential use will be a less intensive land use and will generate fewer vehicular trips than previously. Table 5 shows a comparison of the vehicle trip generation between the existing site and the proposed Wardman Park Redevelopment. Existing vehicular trips were determined using available historic turning movement count data at each existing site driveway that were collected in 2016 when the hotel was open. Compared to when the hotel was active, the proposed

¹ Maps of traffic analysis zones and Census tracts in the District of Columbia are available at <u>www.opendata.dc.gov</u>.

development results in an overall reduction in vehicular trip generation, with 87 fewer vehicle trips (69 fewer inbound and 18 fewer outbound) during the AM peak hour and 180 (76 fewer inbound and 104 fewer outbound) fewer vehicle trips during the PM peak hour.

Table 4: ITE Multi-Modal Trip Generation by Use

Mode	μ	AM Peak Hou	ır		PM Peak Hou	r	Sat	our	Daily	
woue	In	Out	Total	In	Out	Total	In	Out	Total	Total
				Propos	ed Residentia	l (875 Units)				
Auto	110 veh/hr	86 veh/hr	196 veh/hr	76 veh/hr	102 veh/hr	178 veh/hr	125 veh/hr	122 veh/hr	247 veh/hr	2,909 veh
Transit	46 ppl/hr	37 ppl/hr	83 ppl/hr	32 ppl/hr	43 ppl/hr	75 ppl/hr	53 ppl/hr	51 ppl/hr	104 ppl/hr	1,226 ppl
Bike	4 ppl/hr	3 ppl/hr	7 ppl/hr	3 ppl/hr	3 ppl/hr	6 ppl/hr	4 ppl/hr	4 ppl/hr	8 ppl/hr	98 ppl
Walk	5 ppl/hr	4 ppl/hr	9 ppl/hr	4 ppl/hr	5 ppl/hr	9 ppl/hr	7 ppl/hr	5 ppl/hr	12 ppl/hr	147 ppl

Table 5: Net Vehicular Trip Generation

			AM Peak Hour			PM Peak Hour	
Use	Size	In	Out	Total	In	Out	Total
Proposed Residential	875 du	110 veh/hr	86 veh/hr	196 veh/hr	76 veh/hr	102 veh/hr	178 veh/hr
Existing Hotel*		179 veh/hr	104 veh/hr	283 veh/hr	152 veh/hr	206 veh/hr	358 veh/hr
	Difference in Trips	-69 veh/hr	-18 veh/hr	-87 veh/hr	-76 veh/hr	-104 veh/hr	-180 veh/hr
*Existing botal trip generation	n based on 2016 drivews	av counte			·		

*Existing hotel trip generation based on 2016 driveway counts

Traffic Operations

This chapter provides a summary of an analysis of the existing and future roadway capacity surrounding the site. Included is an analysis of potential vehicular impacts of the Wardman Park Redevelopment and a discussion of potential improvements.

The purpose of the capacity analysis is to:

- Determine the existing capacity of the study area roadways;
- Determine the overall impact of the project on the study area roadways; and
- Discuss any potential improvements and mitigation measures to accommodate the additional vehicular trips.

This analysis was accomplished by determining the traffic volumes and roadway capacity for Existing Conditions, Background Conditions, and Total Future Conditions. The scope of the capacity analysis was developed based on DDOT guidelines and agreed to by DDOT staff.

The capacity analysis focuses on the weekday morning and afternoon commuter peak hours, as determined by the existing traffic volumes in the study area.

Based on DDOT standards, the proposed development is considered to have an impact at an intersection within the study area if any of the following conditions are met:

- The capacity analyses show an LOS E or F at an intersection or along an approach in the future with conditions with the project where one does not exist in the background conditions;
- There is an increase in delay at any approach or overall intersection operating under LOS E or F of greater than five (5) percent when compared to the background conditions;
- The 95th percentile queues exceed storage along an approach in the future conditions with the project where one does not exist in the background scenario; or
- There is an increase in the 95th percentile queues by more than 150 feet along an approach that exceeds storage in the background scenario.

This chapter concludes:

 Under Existing Conditions, one (1) study intersection operates at unacceptable levels of service, at the intersection of Calvert Street and 29th Street NW.

- The addition of background developments and growth under Background Conditions does not significantly impact delays or queuing.
- The addition of site-generated trips does not significantly affect the delays or queuing at most intersections.
- Under Total Future Conditions, no intersections meet DDOT's threshold for mitigation measures as the project creates no significant impact.
- The project will not have a detrimental impact to the surrounding vehicular network and with the implementation of all site design elements.

Study Area, Scope, and Methodology

This section outlines the vehicular trips generated in the study area along the vehicular access routes and defines the analysis assumptions.

The scope of the analysis contained within this report was discussed with and agreed upon by DDOT. The general methodology of the analysis follows national and DDOT guidelines on the preparation of transportation impact evaluations of site development.

Capacity Analysis Scenarios

The vehicular capacity analyses were performed to determine whether the project will lead to adverse impacts on traffic operations. A review of potential impacts to each of the other modes is outlined later in this report. This is accomplished by comparing future scenarios: (1) without the project (referred to as Background Conditions and (2) with the project approved and constructed (referred to as Total Future Conditions).

Specifically, the roadway capacity analysis examined the following scenarios:

- 2022 Existing Conditions
- 2025 Future Conditions without the development (2025 Background Conditions)
- 2025 Future Conditions with the development (2025 Total Future Conditions)

Study Area

The study area of the analysis is a set of intersections where detailed capacity analyses were performed for the scenarios listed above. The set of intersections decided upon during the study scoping process with DDOT are those intersections most likely to have potential impacts or require changes to traffic operations to accommodate the Project. Although it is possible that impacts will occur outside of the study area, those impacts are neither significant enough to be considered a material adverse impact nor worthy of mitigation measures.

Based on the projected future trip generation and the location of the site access points, the following intersections were chosen and agreed upon by DDOT for analysis:

- 1. Woodley Road/Garfield Street & 29th Street, NW
- 2. Woodley Road & 27th Street, NW
- 3. Woodley Road & Site Driveway, NW
- 4. Connecticut Avenue & Woodley Road, NW
- 5. Connecticut Avenue & 24th Street, NW
- 6. Site Driveway & 24th Street, NW
- 7. Calvert Street/Cleveland Avenue & 29th Street, NW
- 8. Site Driveway & Calvert Street, NW
- 9. Calvert Street & 24th Street/Shoreham Drive, NW
- 10. Connecticut Avenue & Calvert Street, NW

Figure 22 shows a map of the study area intersections.

Geometric and Operations Assumptions

The following section reviews the roadway geometry and operations assumptions made and the methodologies used in the roadway capacity analyses.

Existing Geometry and Operations Assumptions

The geometry and operations assumed in the existing conditions scenario are those present when the main data collection occurred. Gorove Slade made observations and confirmed the existing lane configurations and traffic controls at the intersections within the study area. Existing signal timings and offsets were obtained from DDOT and confirmed during field reconnaissance.

The lane configurations and traffic controls for the Existing Conditions are shown on Figure 23.

Background Geometry and Operations Assumptions

Following national and DDOT methodologies, a background improvement must meet the following criteria to be incorporated into the analysis:

• Be funded; and

• Have a construction completion date prior or close to the project.

Based on these criteria, no improvements were assumed.

The lane configurations and traffic controls for the 2025 Background Conditions are consistent with Existing Conditions and are shown in Figure 24.

Total Future Geometry and Operations Assumptions

The configurations and traffic controls for the 2025 Future Conditions were based on those for the 2025 Background Conditions with the addition of the proposed Wardman Park Redevelopment. No modifications to geometry and/or operations are proposed as part of the project.

The lane configurations and traffic controls for the 2025 Total Future Conditions are consistent with 2025 Background Conditions and are shown in Figure 25.

Traffic Volume Assumptions

The following section reviews the traffic volume assumptions and methodologies used in the roadway capacity analyses.

Existing Traffic Volumes

The existing traffic volumes are comprised of turning movement count data which were collected on Tuesday, May 24, 2022, from 6:30 to 9:30 AM and 4:00 to 7:00 PM. The existing turning movement counts are included in the Technical Attachments.

For all intersections, the weekday morning and weekday afternoon system peak hours were used. Based on the turning movement counts, the morning system peak hour was from 8:00 to 9:00 AM and the afternoon system peak hour was from 5:15 to 6:15 PM. Existing volumes were balanced, as appropriate. The 2022 Existing peak hour traffic volumes, with balancing adjustments, are shown in Figure 26.

Background Traffic Volumes (without the Project)

The traffic projections for the 2025 Background Conditions consist of the existing volumes with three (3) possible additions:

- Volume reroutes as a result of transportation network roadway projects;
- Inherent growth on the roadway (representing regional traffic growth); and
- The impacts of "background" developments, if any.

Following national and DDOT methodologies, a background development must meet the following criteria to be incorporated into the analysis:

- Be located in the study area, defined as having an origin or destination point within the cluster of study area intersections;
- Have entitlements; and
- Have a construction completion date prior or close to the proposed development.

Based on these criteria, and as discussed with and agreed upon by DDOT, one (1) development was considered and determined to meet the above criteria:

1. 2607 Connecticut Avenue, NW

A summary of the trip generation for the background development is shown in Table 6. Detailed mode split and trip generation information is included in the Technical Attachments.

While the background development reflects local traffic changes, regional traffic growth is typically accounted for using growth rates. The growth rates used in this analysis are derived using the Metropolitan Washington Council of Government's (MWCOG) currently adopted regional transportation model, comparing the difference between the year 2022 and 2025 model scenarios as vetted and agreed to by DDOT. The growth rates observed in this model served as a basis for analysis assumptions. The applied growth rates are shown in Table 7.

The background growth volumes are shown in Figure 27, and background development volumes are shown in Figure 28.

The traffic volumes generated by the inherent growth along the network were added to the existing traffic volumes in order to establish the 2025 Background traffic volumes. The traffic volumes for the 2025 Background Conditions are shown in Figure 29.

Total Future Traffic Volumes (with the Project)

The 2025 Total Future traffic volumes consist of the 2025 Background volumes with the addition of the traffic volumes generated by the residential uses of the project. Thus, the 2025 Total Future traffic volumes include traffic generated by: the existing volumes, background developments, the inherent growth on the study area roadways, and the project.

Trip distribution for the site-generated trips was determined based on: (1) CTPP TAZ data, (2) existing and future travel patterns in the study area, and (3) the location of the parking access. Trip distributions were vetted and agreed to by DDOT.

Based on this review and the site access locations, the projectgenerated trips were distributed through the study area intersections. The residential trip distribution was influenced by the CTPP TAZ flow data for residents commuting from the site's TAZ and adjusted based on traffic volumes and patterns. The origin of outbound and destination of inbound residential vehicular trips were the vehicular access points to the belowgrade parking garage on Woodley Road NW, Calvert Street NW, and 24th Street NW.

A summary of trip distribution assumptions is provided in Figure 30 for inbound and outbound trips. The project-generated traffic volumes are shown in Figure 31, and the 2025 Total Future traffic volumes are shown in Figure 32.

Peak Hour Factors

The TRB *Highway Capacity Manual* (HCM) and the AASHTO *Policy on Geometric Design of Highways and Intersections* recommend evaluating traffic conditions during the worst 15 minutes of either a design hour or a typical weekday rush hour. Peak Hour Factor (PHF) is used to convert the hourly volume into the volume rate representing the busiest 15 minutes of the hour. The existing guidelines provide typical values of PHF and advise using the PHF calculated from vehicle counts at analyzed or similar locations. The HCM recommends a PHF of 0.88 for rural areas and 0.92 for urban areas and presumes that capacity constraints in congested areas reduce the short-term traffic fluctuation. The HCM suggests 0.95 as the typical PHF for congested roadways.

For the Existing Conditions analysis, the PHF was calculated from the turning movement data that were collected in the field. Per DDOT guidelines, the intersection PHF remained the same through all study scenarios.

Table 6: Summary of Backg	round Trip Generation						
Background Development	Trip Generation Source	A	M Peak Ho	our	P	PM Peak Ho In Out 2 3	ur
Background Development	The Generation Source	In	Out	Total	In	Out	Total
2607 Connecticut Avenue	ITE's Trip Generation 11 th Edition Manual	3	3	6	2	3	5
	Total Background Site Trips	3	3	6	2	3	5

Table 7: Applied Annual and Total Growth Rates

Roadway	Direction	Proposed Annu	al Growth Rate	Total Growth (2022-2025)		
Roadway	Direction	AM Peak	PM Peak	AM Peak	PM Peak	
Connecticut Avenue NW	NB	0.10%	0.10%	0.30%	0.30%	
Connecticut Avenue NVV	SB	0.12%	0.10%	0.30%	0.30%	
Weedley Read NW	EB	0.50%	0.10%	1.51%	0.30%	
Woodley Road NW	WB	0.10%	0.50%	0.30%	1.51%	
Calvert Street/Cleveland Avenue NW	EB	0.20%	0.10%	0.60%	0.30%	
Calvert Street/Cleveland Avenue NW	WB	0.10%	0.10%	0.30%	0.30%	
Sharaham Driva/Baak Croak Barkway	NB	0.10%	0.10%	0.30%	0.30%	
Shoreham Drive/Rock Creek Parkway	SB	0.10%	0.10%	0.30%	0.30%	
All Other Roadways		0.10%	0.10%	0.30%	0.30%	

Vehicular Analysis Results

Intersection Capacity Analysis

Intersection capacity analyses were performed for the three (3) scenarios outlined previously at the intersections contained within the study area during the AM and PM peak hours. Synchro Version 10 was used to analyze the study intersections based on the HCM 2000 methodology.

The results of the capacity analyses are expressed in level of service (LOS) and delay (seconds per vehicle) for each approach. An LOS grade is a letter grade based on the average delay (in seconds) experienced by motorists traveling through an intersection. LOS results range from "A" being the best to "F" being the worst. LOS D is typically used as the acceptable LOS threshold in the District; however, LOS E or F is sometimes accepted in urbanized areas if vehicular improvements would be a detriment to safety or non-auto modes of transportation.

The LOS capacity analyses were based on: (1) the intersection peak hour traffic volumes; (2) the lane use and traffic controls; and (3) the HCM methodologies (using *Synchro* software). The average delay of each approach and LOS is shown for the signalized intersections in addition to the overall average delay and intersection LOS grade. The HCM does not give guidelines for calculating the average delay for a two-way stop-controlled intersection, as the approaches without stop signs would technically have no delay. Detailed LOS descriptions and the analysis worksheets are contained in the Technical Attachments. Table 8 shows the results of the capacity analyses, including LOS and average delay per vehicle (in seconds) for the Existing, 2025 Background, and 2025 Total Future scenarios. Table 9 shows a comparison of the volume to capacity (v/c) ratios for each scenario.

Queuing Analysis

In addition to the capacity analyses presented above, a queuing analysis was performed at each of the study intersections. The queuing analysis was performed using *Synchro* software. The 50th percentile and 95th percentile maximum queue lengths are shown for each lane group at the study area signalized intersections. The 50th percentile maximum queue is the maximum back of queue on a typical cycle. The 95th percentile traffic volumes. For unsignalized intersections, the 95th percentile queue is reported for each lane group (including free-flowing left turns and stop-controlled movements) based on the HCM calculations.

Table 10 shows the queuing results for the study area intersections. Four (4) of the study intersections exhibit one or more lane group that exceeds the given storage length under Existing Conditions:

- Connecticut Avenue & Woodley Road
 - Westbound (PM)
- Connecticut Avenue & 24th Street
 - Eastbound (PM)
- Calvert Street & 24th Street/Shoreham Drive
 - Eastbound Thru/Right (AM/PM)
 - Westbound Thru (PM)
 - Northbound Right (PM)
 - Southbound (AM)
- Connecticut Avenue & Calvert Street
 - Eastbound Right (PM)
 - Westbound Thru (AM/PM)

The introduction of trips from background development and/or site-generated trips does not result in any additional study intersections exhibiting a queue which exceeds the storage length.

Mitigation Measures

Based on DDOT standards, the project is considered to have an impact at an intersection within the study area if any of the following conditions are met:

- The capacity analyses show an LOS E or F at an intersection or along an approach in the Total Future Conditions with the project where one does not exist in the Background Conditions;
- There is an increase in delay at any approach or overall intersection operating under LOS E or F of greater than five (5) percent when compared to the Background Conditions; or
- There is an increase in the 95th percentile queues by more than 150 feet at an intersection or along an approach in the Future Conditions with the project where one does not exist in the Background Conditions.

Based on these criteria, no intersections are impacted by the project.

Figure 22: Study Area Intersections

Figure 23: Existing Lane Configuration and Traffic Control

Figure 24: Background Lane Configuration and Traffic Control

Figure 25: Total Future Lane Configuration and Traffic Control

Figure 26: Existing Peak Hour Traffic Volumes

Figure 27: Background Growth Peak Hour Traffic Volumes

Figure 28: Background Developments Peak Hour Traffic Volumes

Figure 29: Background Peak Hour Traffic Volumes

Figure 30: Outbound and Inbound Trip Distribution

Figure 31: Site-Generated Peak Hour Traffic Volumes

Figure 32: Total Future Peak Hour Traffic Volumes

Table 8: LOS Results

	6. LOS Results		Existing	g (2022)		В	ackgrou	nd (2025)			Future	(2025)	
	Intersection and Approach	AM F		PM F	Peak	AM F		PM F		AM F	Peak	PM F	Peak
		Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
1.	Woodley Road/Garfield Street & 29th Street NW												
	Eastbound	7.9	А	7.6	А	8.0	А	7.6	А	8.3	А	7.8	А
	Westbound	8.4	А	8.1	А	8.4	Α	8.1	А	8.6	А	8.2	А
	Northbound	8.0	А	7.7	А	8.0	А	7.7	А	8.3	А	7.9	А
	Southbound	8.3	А	7.8	А	8.3	Α	7.8	Α	8.5	А	7.9	А
2.	Woodley Road & 27th Street NW												
	Eastbound	0.1	А	0.0	А	0.1	Α	0.0	Α	0.1	А	0.0	А
	Westbound	1.2	А	1.3	А	1.2	Α	1.3	Α	1.1	А	1.2	А
	Northbound	11.2	В	11.2	В	11.2	В	11.2	В	11.6	В	11.6	В
	Southbound	12.6	В	11.7	В	12.6	В	11.7	В	13.2	В	12.1	В
3.	Woodley Road & Site Driveway NW												
	Eastbound	0.0	А	0.0	А	0.0	А	0.0	А	0.0	A	0.0	А
	Westbound	0.1	А	0.0	А	0.1	А	0.0	А	2.2	А	1.3	А
	Northbound	9.9	А	9.6	А	10.0	Α	9.6	Α	10.3	В	9.8	А
4.	Connecticut Avenue & Woodley Road NW												
	Overall	15.9	В	17.0	В	15.9	В	17.1	В	16.5	В	17.3	В
	Eastbound	37.7	D	20.5	С	37.9	D	20.5	С	39.1	D	21.1	С
	Westbound	42.0	D	46.3	D	42.0	D	46.7	D	41.9	D	46.9	D
	Northbound	2.0	А	4.6	А	2.0	А	4.6	Α	2.6	А	4.8	А
	Southbound	18.1	В	32.1	С	18.1	В	32.1	С	18.2	В	32.2	С
5.	Connecticut Avenue & 24th Street NW												
	Overall	3.2	Α	7.1	Α	3.2	Α	7.1	Α	3.4	Α	7.7	Α
	Eastbound	35.3	D	36.2	D	36.0	D	36.1	D	37.5	D	38.1	D
	Northbound	0.5	А	4.1	А	0.5	Α	4.1	А	0.5	A	4.3	А
	Southbound	3.2	А	3.5	А	3.3	Α	3.5	A	3.4	A	3.7	A
6.	Site Driveway & 24th Street NW												
	Eastbound	10.5	В	9.2	A	10.6	В	9.2	Α	10.8	В	9.6	A
	Northbound	0.2	А	0.0	A	0.1	A	0.0	Α	2.5	A	0.7	А
	Southbound	0.0	А	0.0	A	0.0	А	0.0	Α	0.0	A	0.0	А
7.	Calvert Street/Cleveland Avenue & 29th Street NW												
	Overall	27.0	С	20.4	С	27.1	С	20.7	С	27.4	С	20.8	С
	Eastbound	24.8	С	21.5	С	25.0	С	21.5	С	25.1	С	21.6	С
	Westbound	17.8	В	14.5	В	17.7	В	14.5	В	18.0	В	14.8	В
	Northbound	58.9	E	59.8	E	58.9	Е	59.8	E	58.9	E	59.8	E
	Northwestbound	0.0	А	0.0	А	0.0	А	0.0	А	0.0	А	0.0	А
	Southbound	56.1	E	53.7	D	56.3	E	54.6	D	57.4	E	54.6	D

			Existing	g (2022)		B	Backgrou	ınd (2025))		Future	(2025)	
	Intersection and Approach	AM F	Peak	PM F	Peak	AM F	Peak	PM F	Peak	AM F	Peak	PM F	Peak
		Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
8.	Site Driveway & Calvert Street NW												
	Eastbound	0.0	А	0.0	А	0.0	А	0.0	А	0.4	А	0.1	А
	Westbound	0.0	А	0.0	А	0.0	А	0.0	А	0.0	А	0.0	А
	Southbound	15.8	С	16.3	С	16.0	С	16.4	С	14.5	В	18.6	С
9.	Calvert Street & 24th Street/Shoreham Drive NW												
	Overall	18.1	В	28.8	С	18.3	В	28.8	С	19.5	В	29.0	С
	Eastbound	21.6	С	34.2	С	21.8	С	34.2	С	22.0	С	34.3	С
	Westbound	5.3	А	34.1	С	5.7	А	34.1	С	7.5	А	34.2	С
	Northbound	0.0	А	22.9	С	0.0	А	23.0	С	0.0	А	23.5	С
	Southbound	33.8	С	5.1	А	33.9	С	5.1	А	37.0	D	7.5	А
10.	Connecticut Avenue & Calvert Street NW												
	Overall	31.0	С	24.9	С	31.1	С	25.0	С	32.7	С	25.5	С
	Eastbound	29.7	С	19.4	В	29.7	С	19.4	В	29.7	С	19.9	В
	Westbound	44.3	D	52.0	D	44.4	D	52.1	D	44.9	D	52.5	D
	Northbound	45.5	D	19.7	В	45.7	D	19.7	В	50.5	D	19.8	В
	Southbound	14.9	В	27.2	С	15.0	В	27.4	С	15.3	В	28.8	С

Table 9: v/c Comparison

		Existin	g (2022)	Backgro	und (2025)	Future	(2025)
	Intersection and Movement	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
		v/c	v/c	v/c	v/c	v/c	v/c
1.	Woodley Road/Garfield Street & 29th Street NW						
	Eastbound LTR						
	Westbound LTR						
	Northbound LTR						
	Southbound LTR						
2.	Woodley Road & 27th Street NW						
	Eastbound LTR	0.01	0.01	0.01	0.01	0.01	0.01
	Westbound LT	0.01	0.02	0.01	0.02	0.01	0.02
	Northbound LR	0.04	0.04	0.04	0.04	0.05	0.04
	Southbound LTR	0.17	0.07	0.17	0.07	0.18	0.08
3.	Woodley Road & Site Driveway NW						
	Eastbound LTR	0.12	0.07	0.13	0.07	0.15	0.09
	Westbound LTR	0.00	0.00	0.00	0.00	0.03	0.02
	Northbound LTR	0.00	0.00	0.00	0.00	0.08	0.07
4.	Connecticut Avenue & Woodley Road NW						
	Eastbound LT	0.17	0.10	0.17	0.10	0.24	0.15
	Eastbound R	0.42	0.12	0.42	0.12	0.46	0.16
	Westbound LTR	0.25	0.51	0.25	0.53	0.24	0.53
	Northbound LTR	0.29	0.38	0.29	0.38	0.32	0.40
	Southbound TR	0.50	0.34	0.50	0.34	0.51	0.35
5.	Connecticut Avenue & 24th Street NW						
	Eastbound LR	0.20	0.40	0.20	0.40	0.24	0.46
	Northbound T	0.20	0.31	0.20	0.31	0.21	0.32
	Southbound TR	0.51	0.24	0.51	0.24	0.52	0.25
6.	Site Driveway & 24th Street NW						
	Eastbound LR	0.00	0.00	0.00	0.00	0.04	0.03
	Northbound LT	0.00	0.00	0.00	0.00	0.02	0.01
	Southbound TR	0.20	0.04	0.20	0.04	0.20	0.04
7.	Calvert Street/Cleveland Avenue & 29th Street NW						
	Eastbound LT	0.62	0.45	0.63	0.45	0.63	0.45
	Eastbound TR	0.03	0.01	0.03	0.01	0.03	0.01
	Westbound LTR	0.28	0.38	0.29	0.39	0.29	0.39
	Northbound LTR	0.17	0.21	0.17	0.21	0.17	0.21
	Southbound LTR	0.60	0.53	0.61	0.55	0.63	0.55

		Existin	g (2022)	Backgrou	ınd (2025)	Future	(2025)
	Intersection and Movement	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
		v/c	v/c	v/c	v/c	v/c	v/c
8.	Site Driveway & Calvert Street NW						
	Eastbound LT	0.00	0.00	0.00	0.00	0.01	0.00
	Westbound TR	0.26	0.43	0.26	0.43	0.26	0.43
	Southbound LR	0.01	0.01	0.01	0.01	0.05	0.08
9.	Calvert Street & 24th Street/Shoreham Drive NW						
	Eastbound L	0.09	0.16	0.09	0.16	0.09	0.16
	Eastbound TR	0.54	0.39	0.54	0.39	0.55	0.40
	Westbound L (AM Peak)	0.56		0.57		0.63	
	Westbound T (AM Peak)	0.35		0.35		0.36	
	Westbound R (AM Peak)	0.07	0.15	0.07	0.15	0.12	0.17
	Westbound T (PM Peak)		0.67		0.67		0.67
	Westbound R (PM Peak)		0.15		0.15		0.17
	Northbound LT (PM Peak)		0.52		0.52		0.53
	Northbound R (PM Peak)		0.52		0.53		0.55
	Southbound LTR	0.75	0.15	0.75	0.15	0.79	0.17
10.	Connecticut Avenue & Calvert Street NW						
	Eastbound T	0.21	0.46	0.21	0.47	0.21	0.47
	Eastbound R	0.38	0.54	0.39	0.54	0.39	0.56
	Westbound T	0.78	0.56	0.78	0.56	0.79	0.57
	Westbound R	0.31	0.59	0.31	0.59	0.32	0.60
	Northbound LT	0.79	0.60	0.79	0.60	0.86	0.61
	Northbound R	0.07	0.04	0.07	0.04	0.07	0.04
	Southbound LTR	0.57	0.54	0.57	0.54	0.60	0.58

Table 10: Queuing Results (in feet)

1. W N E S W S C 2. W E E W N S G S C 4. C C E	Astbound LTR /estbound LTR orthbound LTR outhbound LTR /oodley Road & 27th Street NW astbound TR /estbound LT orthbound LR outhbound LTR /oodley Road & Site Driveway NW	Storage Length (ft) 120 290 950 880 260 470 190 140	AM 50th 	Peak 95th 0 1	50th 	Peak 95th 	AM . 50th 	Peak 95th 	<i>PM</i> 50th 	Peak 95th 	50th 	Peak 95th 	<i>PM</i> 50th 	Peak 95th
1. N E W N S S C 2. W E E W W S G S C 4. C C E	W astbound LTR /estbound LTR outhbound LTR /oodley Road & 27th Street NW astbound TR /estbound LT orthbound LR outhbound LTR /oodley Road & Site Driveway NW	120 290 950 880 260 470 190		 0	 	 	 	 	 		 	95th 	50th 	
1. N E W N S S C 2. W E E W W S G S C 4. C C E	W astbound LTR /estbound LTR outhbound LTR /oodley Road & 27th Street NW astbound TR /estbound LT orthbound LR outhbound LTR /oodley Road & Site Driveway NW	290 950 880 260 470 190										 		
2. W Ea W No So So 3. W Ea W No 4. Co Ea	/estbound LTR orthbound LTR outhbound LTR /oodley Road & 27th Street NW astbound TR /estbound LT orthbound LR outhbound LTR /oodley Road & Site Driveway NW	290 950 880 260 470 190											 	
2. W Ea W No Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc	orthbound LTR outhbound LTR /oodley Road & 27th Street NW astbound TR /estbound LT orthbound LR outhbound LTR /oodley Road & Site Driveway NW	950 880 260 470 190	 											
2. W Ea W No Sc 3. W Ea W No 4. Co	outhbound LTR /oodley Road & 27th Street NW astbound TR /estbound LT orthbound LR outhbound LTR /oodley Road & Site Driveway NW	880 260 470 190												
2. W Ea W No Sc 3. W Ea W W No 4. Co	/oodley Road & 27th Street NW astbound TR /estbound LT orthbound LR outhbound LTR /oodley Road & Site Driveway NW	260 470 190		0										
Ea W No So 3. W Ea W No 4. Co Ea	astbound TR /estbound LT orthbound LR outhbound LTR /oodley Road & Site Driveway NW	470 190												
W No 3. W Ea W No 4. Co Ea	/estbound LT orthbound LR outhbound LTR /oodley Road & Site Driveway NW	470 190												
No 3. W Ea W No No 4. Co Ea Ea	orthbound LR outhbound LTR /oodley Road & Site Driveway NW	190		1		0		0		0		0		0
3. W Ea W Na 4. Co Ea	outhbound LTR /oodley Road & Site Driveway NW			I		2		1		2		1		2
3. W Ea W No 4. Co Ea	/oodley Road & Site Driveway NW	140		3		3		3		3		4		3
Ea W No 4. Co Ea	•			15		6		15		6		16		6
W No 4. Co Ea														
4. C e	astbound LTR	300		0		0		0		0		0		0
4. Co Ea	/estbound LTR	170		0		0		0		0		3		2
Ea	orthbound LTR	220		0		0		0		0		6		6
	onnecticut Avenue & Woodley Road NW													
Ea	astbound LT	180	30	63	18	44	30	63	18	44	39	78	26	57
	astbound R	180	86	139	26	49	88	142	26	49	94	153	37	65
W	/estbound LTR	140	39	78	94	163	39	78	96	165	38	77	96	166
No	orthbound LTR	150	9	19	34	41	9	20	34	41	10	33	36	42
	outhbound TR	340	208	240	105	138	209	241	105	138	212	245	107	140
5. C	onnecticut Avenue & 24th Street NW													
	astbound LR	150	17	40	89	179	18	43	89	179	23	54	106	203
N	orthbound T	400	4	m4	28	36	4	m4	28	37	4	m4	31	39
So	outhbound TR	150	31	43	28	34	31	44	28	35	36	50	31	38
	ite Driveway & 24th Street NW													
Ea	astbound LR	300		0		0		0		0		3		3
N	orthbound LT	260		0		0		0		0		2		1
	outhbound TR	150		0		0		0		0		0		0
7. Ca	alvert Street/Cleveland Avenue & 29th Street	NW												
	astbound LT	570	244	336	153	222	246	339	154	225	249	342	155	226
	astbound TR	570	3	11	2	8	3	11	2	8	3	11	2	8
	/estbound LTR	360	56	98	72	135	56	98	72	136	60	m100	73	137
No		150	5	20	5	21	5	20	5	21	5	20	5	21
So	orthbound LTR	960	108	176	56	103	108	177	60	108	112	182	60	108

		Storage	rage Existing (2022)				Background (2025)				Future (2025)			
	Intersection and Lane Group	Length	AM	Peak	PM	Peak	AM	Peak	PM	Peak	AM	Peak	PM	Peak
		(ft)	50th	95th	50th	95th	50th	95th	50th	95th	50th	95th	50th	95th
8.	Site Driveway & Calvert Street NW													
	Eastbound LT	360		0		0		0		0		1		0
	Westbound TR	340		0		0		0		0		0		0
	Southbound LR	360		0		0		0		0		4		6
9.	Calvert Street & 24th Street/Shoreham Drive NW													
	Eastbound L	170	10	m22	17	46	10	m22	17	47	10	m21	16	47
	Eastbound TR	200	161	222	161	219	162	224	162	221	165	228	167	226
	Westbound L (AM Peak)	200	19	m25			20	m27			22	m37		
	Westbound T (AM Peak)	200	9	m10			10	m12			20	m23		
	Westbound R (AM Peak)	200	1	m1	15	m25	1	m1	15	m26	3	m3	19	m30
	Westbound T (PM Peak)	200			195	314			196	315			197	318
	Westbound R (PM Peak)	200			15	m25			15	m26			19	m30
	Northbound LT (PM Peak)	640			140	225			141	226			143	223
	Northbound R (PM Peak)	110			175	265			176	268			189	286
	Southbound LTR	180	209	#358	6	13	210	#354	6	13	240	#407	12	23
10.	Connecticut Avenue & Calvert Street NW													
	Eastbound T	220	61	m99	83	113	62	m100	83	113	64	m101	85	117
	Eastbound R	220	77	m95	45	346	78	m95	46	349	78	m96	52	366
	Westbound T	190	300	#433	148	231	301	#436	149	232	306	#448	151	234
	Westbound R	190	66	119	69	#129	66	119	69	#129	68	121	70	#136
	Northbound LT	1000	~311	#431	307	385	~314	#434	308	387	~355	#478	312	392
	Northbound R	190	14	38	7	20	14	38	7	20	14	38	7	20
	Southbound LTR	390	73	79	138	178	73	79	140	180	77	82	148	189

95th percentile volume exceeds capacity; queue may be longer.

m Volume for 95th percentile queue is metered by upstream signal.

~ Volume exceeds capacity, queue is theoretically infinite.

Transit Facilities

This chapter discusses the existing and planned transit facilities in the vicinity of the site, accessibility to transit, and evaluates the overall transit impacts of the Wardman Park Redevelopment.

This chapter concludes that:

- The site is surrounded by an extensive regional and local transportation system that will accommodate the residents of the proposed development;
- The development site is less than 0.1 miles or a two (2) minute walk from the Woodley Park-Zoo/Adams Morgan Metrorail station;
- The site has access to two (2) Metrobus routes and one

 DC Circulator route within a six (6) minute walk that
 provide connections to all six (6) Metrorail lines and
 neighborhoods from Adams Morgan and U Street to the
 northwest to Anacostia and Capitol Heights to the
 southeast; and
- The nearby Columbia Road NW, Connecticut Avenue NW, and Wisconsin Avenue NW transit priority corridors included in the *moveDC* 2021 update, as well as other corridors that cover major Metrobus routes throughout the District, have the potential to improve transit access to the site.

Existing Transit Service

The site is served by two (2) Metrobus lines and the DC Circulator as shown in Figure 33. The Metrobus route L2 provides commuter service between Chevy Chase Circle to the north and Farragut Square to the south. The Metrobus route 96 connects the site to neighborhoods throughout the District of Columbia including Capitol Hill, U Street, and Tenleytown to the west and Capitol Heights to the east. The DC Circulator route Woodley Park- Adam Morgan-McPherson Square provides connections from Connecticut Avenue NW/ Calvert Street NW to I Street/14th Street NW. The DC Circulator runs every five (5) to 25 minutes from 6:00 AM to 12:00 AM on weekdays, 7:00 AM to 3:30am on Saturdays, and 7:00 AM to 12:00 AM on Sundays. Table 11 shows a summary of the bus route information for the routes that serve the site, including service hours, headway, and distance to the nearest bus stop.

Table 12 shows WMATA's recommended amenities for eachtype of bus stop. Table 13 shows a detailed inventory of the

amenities appearing at each existing bus stop within the transit study area.

The site is located within an approximately two (2) minute walk or less than 0.1 miles from the Woodley Park-Zoo/Adams Morgan Metrorail station (served by the Red Line). The Red Line travels south from Shady Grove, MD through Bethesda, MD and the District core before turning north at Union Station (south of the site) through Silver Spring, MD to Glenmont, MD.

As of December 2022, Red Line trains run every 10 minutes on weekdays and weekends. Before the COVID-19 public health crisis, Red Line trains ran approximately every four (4) minutes during weekday morning and evening peak hours, every six (6) minutes during weekday off-peak hours, and every 15 to 20 minutes on weekends. Metrorail service currently begins at 5:00 AM and 7:00 AM on weekdays and weekends, respectively. Service ends at 12:00 AM on Sunday through Thursday and 1:00 AM on Friday and Saturday.

The 10-, 20-, and 30-minute transitsheds for the site are shown in Figure 34.

Planned Transit Service

moveDC Transit Priority Network

The Transit Priority Network in the approved *moveDC* 2021 update, the District's multimodal long-range transportation plan, proposes transit priority infrastructure such as dedicated transit lanes, better transit stops, and/or special treatments for buses at intersections along designated corridors. Specific treatments along given streets or route paths are not proposed but rather prioritized as part of the long-range plan. Transit priority corridors proposed near the proposed project include:

- Columbia Road NW from Warder Street NW to Leroy Place NW/T Street NW;
- Connecticut Avenue NW from Leroy Place NW/T Street NW to K Street NW; and
- Wisconsin Avenue NW from Maryland State Line to M Street NW.

The Metrobus routes and the DC Circulator route that runs within a quarter mile of the site fall within either one of the above transit priority corridors with all routes serving the site being covered by at least one transit priority corridor in the broader District-wide transit priority network laid out in the *moveDC* 2021 update. Any bus route that uses a street included in one of these transit priority corridors would benefit from potential transit infrastructure enhancements that may improve bus speeds and transit service to the site in the future.

Site-Generated Transit Impacts

Transit Trip Generation

The land uses of the proposed development are projected to generate 83 transit trips (46 inbound, 37 outbound) during the AM peak hour, 75 transit trips (32 inbound, 43 outbound) during

the PM peak hour, and 104 transit trips (53 inbound, 51 outbound) during the Saturday peak hour.

Even though it is expected that the majority of new trips will be made via Metrobus, DC Circulator and Metrorail, site-generated transit trips will not cause detrimental impacts to Metrobus, DC Circulator, or Metrorail service.

Table 11: Local Bus Route Information

Route	Desite News	Service H	lours at Stop Close	st to Site ¹	Headway	Walking	
Number	Route Name	Weekdays	Saturdays	Sundays	(minutes)	Distance to Nearest Stop ²	
			WMATA routes				
L2	Connecticut Avenue Line	5:39am-2:14am	5:42am-2:16am	6:16am-2:12am	20-30	0.1 mi (2 min)	
96	East Capitol Street – Cardozo Line	4:20am-1:08am	4:55am-1:14am	4:55am-1:03am	20-35	0.3 mi (6 min)	
			DC Circulator				
WP-AM	Woodley Park-Adams Morgan-McPherson Square Metro Line	6:00am-12:00am	7:00am-3:30am	7:00am-12:00am	5-25	0.2 mi (4 min)	

¹ Service hours are based on the most recent effective schedules available on WMATA's and DC Circulator's website.

² Only bus stops within the transit review area shown in Figure 33 are included.

Table 12: WMATA Recommended Bus Stop Amenities

Amenity	Basic	: Stop	Enhanced Sten	Transit Contar Ston				
	< 50 daily boardings	≥ 50 daily boardings	Enhanced Stop	Transit Center Stop				
Bus stop flag	•	•	•	•				
Route map and schedule	•	•	•	•				
5' x 8' landing pad	•	•	•	•				
40'/60' x 8' landing pad			•	•				
4' sidewalk	•	•	•	•				
Bench		•	•	•				
Shelter		•	•	•				
Lighting (on shelter or within 30' if overhead)		ops with early morning ng service	•	•				
Dynamic information signage	Contingent on presence of shelter							
Trash and recycling receptacles	Recommended where surrounding uses may generate trash							

Source: 2019 WMATA Bus Stop Amenity Reference Guide

Table 13: Bus Stop Inventory

	, i		Amenities								
Location	Stop ID	Routes Served	Bus stop flag	Route map & sched -ule	Land- ing pad	Side- walk	Bench	Shel- ter	Dy- namic info sign	Light- ing	Trash Recp.
Connecticut Ave & Woodley Rd (SB)	1001913	L2	•	•	•	•	•	•		•	•
Connecticut Ave & Woodley Rd (NB)	1001890	L2	•	•	•	•	•	•			•
Farragut Square	1001875	L2									
Connecticut Ave NW/ 24 th St	1001877	WP-AM	•	•	•	•	•	•			•
Connecticut Ave & Calvert St	1001858	L2	•	•	•	•	•	•	•	•	•
Calvert St & Connecticut Ave (WB)	1001846	96	•	•	•	•					
Calvert St & Connecticut Ave (EB)	1001843	96, L2	•	•	•	٠	•	•	٠	•	•
Calvert St & Shoreham- Americana	1001840	96	•	٠	•	٠	٠	•			٠
Calvert St NW & McGill Ter NW	1001825	96	•	•	•	•					٠
Calvert St & 29th St	1001835	96	•	۲	۲	•					•
29 th St NW & Woodley Rd NW	1001936	96	•	•	•	٠				•	•
29th St & Garfield St	1001937	96	•	•	•	•					
29 th St NW & Cathedral Ave NW	1001990	96	•	•	•	٠				•	•

Figure 33: Existing Transit Facilities

Figure 34: Transitshed from Project Site

Pedestrian Facilities

This chapter summarizes the existing and future pedestrian access to the site and reviews walking routes to and from the site.

The following conclusions are reached within this chapter:

- Despite some incidences of missing sidewalks and curb ramps or sidewalks that do not meet width or buffer standards, overall, there is a good pedestrian network surrounding the site;
- The site will improve the overall pedestrian environment on site by improving the existing curb cuts into the site, adding open space on the north side of the site, adding a courtyard in the center of the site for residents, and reducing the number of curb cuts for the site from four (4) to three (3) which reduces vehicular-pedestrian conflicts; and
- The project is expected to generate pedestrian trips to origins and destinations nearby, in addition to pedestrian trips generated by walking to and from transit stops, including nearby Metrorail. The pedestrian facilities surrounding the project can accommodate these new trips.

Pedestrian Study Area

Pedestrian facilities within approximately a quarter mile walk of the site were evaluated, including the path to the Woodley Park Zoo/Adam Morgan Metrorail station. The existing site has sufficient connectivity to major local destinations, including the Woodley Park Zoo/Adam Morgan Metrorail station and Aidan Montessori School. The 10-, 20-, and 30-minute walksheds for the site are shown in Figure 35. A summary of the existing pedestrian facilities within the study area is shown in Figure 36 with a summary of sidewalk width requirements shown in

Table 14.

Pedestrian Infrastructure

This section outlines existing and proposed pedestrian infrastructure within the pedestrian study area.

Existing Conditions

There are minor areas of concern within the study area that may impact the quality and attractiveness of walking, such as missing sidewalks along 29th Street, 28th Street, 29th Place NW, and Shoreham Drive. Additionally, there are sidewalks in the study area that do not meet DDOT's minimum width or buffer requirements, including those along Calvert Street NW, Woodley Road NW, 28th Street NW, 29th Street NW, and 24th Street NW, among others. Other areas of concern include missing curb ramps along Woodland Drive at its intersection with 29th Street.

Roadways directly adjacent to the site are considered part of a low to moderate density residential and high density/light commercial area as defined under ZR16. Along the site's frontage, sidewalks are present and generally sufficient for walking but do not meet DDOT standards of minimum width or buffer. Nevertheless, sidewalks in the study area are generally in good condition and provide sufficient connectivity.

ADA standards require that all curb ramps be provided wherever an accessible route crosses a curb and must have a detectable warning. Additionally, curb ramps shared between two crosswalks are not desired but where they are present, a 48-inch clear space is required outside active vehicle traffic lanes and within marked crossings. As shown in Figure 36, there are missing curb ramps on Woodlawn Drive as well as a curb ramp that does not met standards along the site frontage on Calvert Street and 24th Street. Crosswalks are generally present along the site's boundary.

Pedestrian Infrastructure Improvements

As shown in Figure 37, pedestrian facilities on-site and along its perimeter at the curb cuts into the site will be improved to meet DDOT and ADA standards. The proposed development will improve the overall pedestrian environment on site by eliminating or narrowing existing curb cuts where possible, improving pedestrian infrastructure at curb cuts for the site, and providing open space on the north side of the site and between the buildings.

Residents of the site will have pedestrian access to/from the Woodley Park-Zoo/Adams Morgan Metrorail station from both buildings. Building A (the east building) will have pedestrian access directly via the 24th Street NW access. Building B (the west building) will have pedestrian access via the pedestrian path along the southern end of the Building A, which connects the internal courtyard to the 24th Street NW access. The courtyard will be open to residents of the site only and will not be used as a public pedestrian connection. The open space within the courtyard between the buildings will be recessed below grade to distinguish it as private space available to residents only. Pedestrian access to the Metrorail station for existing properties will not be impacted by the proposed project.
Site-Generated Pedestrian Impacts

Pedestrian Trip Generation

The land uses of the proposed development are projected to generate nine (9) pedestrian trips (five inbound, four outbound) during the AM peak hour, nine (9) pedestrian trips (three

Table 14: Sidewalk Requirements

inbound, six outbound) during the PM peak hour, and 13 pedestrian trips (six inbound, seven outbound) during the Saturday peak hour. The origins and destinations of these pedestrian trips are likely to be residential, office, and retail locations.

Street Type	Minimum Buffer Width	Minimum Sidewalk Unobstructed Width	Total Minimum Sidewalk Width
Residential (Low to Moderate Density)	4-6 feet	6 feet	10 feet
Residential (High Density)	4-8 feet	8 feet	13 feet
Central DC and Commercial Areas	4-10 feet	10 feet	16 feet

Figure 35: Walkshed from Project Site

Figure 36: Existing Pedestrian Facilities

Figure 37: Future Pedestrian Facilities

Bicycle Facilities

This chapter summarizes existing and future bicycle access, reviews the quality of cycling routes to and from the site, and presents recommendations.

The following conclusions are reached within this chapter:

- The site has access to several on- and off-street bicycle facilities within the study area, including the Rock Creek Trail;
- Several planned and proposed bicycle projects will improve bicycle access to the site, including the construction of a new Capital Bikeshare station in proximity to the site;
- The project is expected to generate a manageable number of bicycle trips that can be accommodated by proposed on-site facilities and the surrounding bicycle network; and
- The project will include bicycle parking facilities that meet and exceed zoning requirements.

Existing Bicycle Facilities

The site has access to existing on- and off-street bicycle facilities. The development is located near bicycle lanes on Calvert Street NW and Woodley Place NW which can be used to access the Rock Creek Trail, which is a 22 mile multi-use path route providing connections through the Rock Creek Valley and along the Potomac River in Washington, DC and Montgomery County, MD. Signed routes west of the site connect to bicycle lanes along Garfield Street NW to the west. Figure 38 illustrates existing bicycle facilities in the area.

The 10-, 20-, and 30-minute bikesheds for the site are shown in Figure 40.

Capital Bikeshare

In addition to personal bicycles, the Capital Bikeshare program provides additional bicycle options for residents of the Wardman Park development. The program has placed over 500 bikeshare stations across the Washington metropolitan area with over 5,000 bicycles in the fleet. One (1) Capital Bikeshare station is located within a quarter mile of the site:

• An existing 22-dock Capital Bikeshare station is available within six (6) minute walk on the southwest corner of the Calvert Street NW and Connecticut Avenue NW

Additionally, two (2) more Capital Bikeshare stations are available within a half mile of the site. Residents may park

Capital Bikeshare e-bikes at any public bicycle rack for an additional fee.

Figure 38 illustrates these and other Capital Bikeshare locations in the area.

Micromobility

As of December 2022, micromobility service in the District is provided by eight (8) private dockless companies operating ebikes and electric scooters (e-scooters). These include two (2) companies operating e-bikes (HelBiz and Jump) and six (6) companies operating e-scooters (Bird, Lime, Lyft, Razor, Skip, and Spin). These dockless vehicles are provided by private companies that give registered users access to a variety of ebike and e-scooter options. These devices are used through each company-specific mobile phone application. Many dockless vehicles do not have designated stations where pick-up/drop-off activities occur like with Capital Bikeshare. They are typically parked in public space, most commonly in the "furniture zone" or the portion of the sidewalk between where people walk and the curb, often where other street signs, street furniture, trees, and parking meters are found. In addition to DDOT's program, dockless programs exist in Arlington County, Fairfax County, the City of Fairfax, the City of Alexandria, and Montgomery County.

Planned Bicycle Improvements

Several bicycle improvements are planned near the site. These are shown in Figure 39.

Capital Bikeshare Development Plan

DDOT's Capital Bikeshare Development Plan was originally released in 2016 to guide the continued growth of Capital Bikeshare in the District of Columbia. The most recent update of the Development Plan was released in 2020 and proposed new Capital Bikeshare stations near the site, including at the following intersection(s):

Connecticut Avenue NW and Kalorama Road NW

moveDC Bicycle Priority Network

As part of its ongoing update to the District's multimodal longterm transportation plan, *moveDC*, DDOT has designated both funded and future planned improvements to the District's Bicycle Priority Network. Funded improvements are locations that currently have funding identified for construction within six (6) years. No funded improvements are proposed near the site. Additionally, DDOT has designated future planned improvements to the network that may be added in the future but currently do not have committed funding. Along Cleveland Avenue, Connecticut Avenue and Wisconsin Avenue, planned improvements will include fully protected facilities based on the roadways' functional classification as arterials. Along Cathedral Avenue, planned improvements may be a protected or standard bicycle lane or other facility type (e.g., advisory, buffered, contraflow, neighborhood bikeway) given roadway conditions and the roadway's functional classification as collectors. These improvements are not currently funded.

Proposed Bicycle Improvements

The proposed development will make significant bicycle related improvements over existing conditions in and around the site.

Bicycle Parking

The project will provide a total of at least 372 long-term and 64 short-term bicycle parking spaces across the site. The project's bicycle parking meets ZR16 and DCMR 18-1214 bicycle parking requirements. The project will provide at least 372 long-term spaces of which a minimum of 19 spaces will be designed for longer cargo/ tandem bikes, a minimum of 37 spaces will be designed with electrical outlets for charging of electric bikes and scooters, and a minimum of 146 spaces will be placed horizontally on the floor. Long-term spaces will be located in secure bicycle storage rooms in the garage. Bicycle repair stations will be provided for use in one of the secure bicycle storage rooms in each building. Short-term spaces will be located in highly accessible locations along the perimeter of the site, near building entrances. No lockers and showers are provided as the zoning requirements do not necessitate showers and lockers for a residential use.

Site-Generated Bicycle Impacts

This section summarizes the impacts of the development on the overall bicycle operations in the vicinity of the site.

Bicycle Trip Generation

The land uses of the proposed development are projected to generate seven (7) bicycle trips (four inbound, three outbound) during the AM peak hour, six (6) bicycle trips (three inbound, three outbound) during the PM peak hour, and eight (8) bicycle trips (four inbound, four outbound) during Saturday.

It is expected that existing bicycle facilities, alongside the planned and proposed bicycle facilities as part of this development and other ongoing efforts, can accommodate these new site-generated trips.

Figure 38: Existing Bicycle Facilities

Figure 39: Future Bicycle Facilities

Figure 40: Bikeshed from Project Site

Safety Analysis

This chapter qualitatively reviews any vehicle, pedestrian, or bicycle conflicts at the study area intersections or street links within the study area. This review includes identifying any intersections within the study area that have been identified by DDOT as high crash locations.

Summary of Safety Analysis

A safety analysis was performed to determine if there are any intersections that pose obvious conflicts with vehicles, pedestrians, or bicyclists. This was determined based on data included in DDOT's most recent *Traffic Safety Statistics Report* (2018-2020), *Vision Zero Action Plan*, and Open Data DC Vision Zero Safety data. Based on available data, no study intersections have been identified by DDOT as a top 20 hazardous/high crash intersection. Additionally, a qualitive review of the crash data available through the DDOT-maintained and publicly available "Crashes in DC" database was performed to identify study intersections in which conditions for vehicles, pedestrians, and bicyclists can be improved.

Based on a review of facilities in the area, in addition to crash data, one (1) intersection was identified for further evaluation. The following section details the potential conflicts at the identified study area intersection.

Potential Impacts

Calvert Street & Connecticut Avenue, NW

This study intersection was identified based on a high concentration of vehicular crashes in the "Crashes in DC" database over the last three (3) years or since approximately July 2018.

Connecticut Avenue NW, a principal arterial road, is a heavily trafficked commuter route. As it is currently configured, high visibility crosswalks are provided on every leg of the intersection, as are curb ramps on every corner. Sidewalks connect to this intersection on all approaches and meet DDOT Standards. Bicycle lanes are available along Calvert Street, through this intersection. Safety concerns at this intersection are primarily due to the existing operations and high traffic volumes. The sitegenerated traffic at this intersection is minimal and not expected to degrade safety.

Summary and Conclusions

The purpose of this CTR is to evaluate whether the project will generate a detrimental impact to the transportation network surrounding the site. This evaluation is based on a technical comparison of the existing conditions, background conditions, and future conditions. This report concludes that **the project will not have a detrimental impact** on the surrounding transportation network assuming that all planned site design elements, and Transportation Demand Management (TDM) plan are implemented.

Proposed Project

The site is located in the Woodley Park neighborhood of Northwest, Washington, DC and is bounded by Woodley Road NW to the north, Calvert Street NW to the south, and residential buildings to the east and west. The proposed project will replace the existing Wardman Park Marriott, a now-closed hotel complex containing 1,152 guest rooms and 195,000 square feet of event space, including 95,000 square feet of exhibit space, with two (2) buildings containing up to 875 residential units.

Vehicular access to the below-grade parking garage is proposed from curb cuts along Woodley Road NW, Calvert Street NW and 24th Street NW. Curb cuts were reduced in size and number where possible while maintaining shared access between the proposed project and adjacent properties. One (1) existing curb cut will be eliminated along Woodley Road NW, resulting in a net of three (3) curb cuts that provide access for the proposed project. The remaining curb cut along Woodley Road NW and the existing curb cut along 24th Street NW cannot be removed as they provide access to adjacent properties through access easement agreements and fire truck access for the buildings; however, both curb cuts will be improved to meet DDOT and DEM standards. Given the limited property frontage on Calvert Street NW, the curb cut has been narrowed as much as possible while allowing for fire truck access and has been relocated as far east as possible to maximize separation between the existing curb cut on the adjacent property to the west, a significant improvement over the existing conditions.

- The Woodley Road NW curb cut provides access to the existing below-grade garage on the north end of the site and the building lobbies for the proposed project.
- The Calvert Street NW curb cut provides access to loading for the west building, parking access to the belowgrade garage, and access to The Woodley apartment building.

 The 24th Street NW curb cut provides access to loading for the east building, parking access to the below-grade garage, and access to Wardman Tower condominium building. Pick-up/drop-off activity will primarily occur within the loop adjacent to the building lobbies, accessed via Woodley Road NW.

The proposed redevelopment will provide a total of four (4) 30foot loading berths for both buildings, two (2) accessible via Calvert Street NW for the west building and two (2) accessible via 24th Street NW for the east building. All truck backing maneuvers will occur within the site along private roadways, allowing for head-in/head-out access to and from the public roadway network. The number of loading berths meets all zoning and DDOT dimensional requirements.

The proposed development will satisfy the 2016 zoning requirements for bicycle parking by including a total of at least 372 long-term bicycle parking spaces and 64 short-term bicycle parking spaces. The project will supply long-term bicycle parking in secure locations within the below-grade parking garage and short-term bicycle parking along the perimeter of the site near building entrances. The vehicular and bicycle parking will also meet the practical needs of the project's residents.

In summary, the proposed project will consist of the following:

- Up to 875 residential units in two (2) buildings on site;
- The elimination of one (1) existing curb cut on Woodley Road NW;
- Three (3) improved curb cuts one (1) each on Woodley Road NW, Calvert Street NW, and 24th Street NW;
- Four (4) 30-foot loading berths with head-in/head-out movements across public space;
- 624 proposed vehicle parking spaces and 289 existing spaces to remain in a below-grade garage of which 40 spaces are provided for the Wardman Tower per the existing easement agreement; and
- At least 372 long-term and 64 short-term bicycle parking spaces, meeting the long-term bicycle parking requirements and satisfying the short-term bicycle parking requirements, as laid out in the Zoning Regulations of 2016 (ZR16) and DCMR 18-1214.

Multi-Modal Overview

Trip Generation

The Wardman Park Redevelopment is transit-, pedestrian-, and bicycle-accessible. The project is expected to generate new trips

on the surrounding transportation network across all modes during the AM and PM peak hours.

The AM peak hour trip generation is projected to include 196 vehicle trips per hour, 83 transit trips per hour, seven (7) bicycle trips per hour, and nine (9) pedestrian trips per hour. The PM peak hour trip generation is projected to include 178 vehicle trips per hour, 75 transit trips per hour, six (6) bicycle trips per hour, and nine (9) pedestrian trips per hour.

The existing hotel on-site is now closed. As such, no trips are generated by the site under existing conditions. However, the hotel was previously very active and generated a considerable number of trips. In comparison, it is expected that the redevelopment of the site to residential use will be a less intensive land use and will generate fewer vehicular trips than previously.

Transit

The development site is well-served by transit. It is located less than 0.1 miles from the Woodley Park-Zoo/Adams Morgan Metrorail station, which is served by WMATA bus routes and the DC Circulator.

Several planned or proposed transit projects will improve transit access to the site, including nearby Transit Priority Corridors proposed in *moveDC*, the District's long-range transportation plan.

The site is expected to generate a manageable number of transit trips, and the existing service can accommodate these new trips.

Pedestrian

The site is surrounded by a well-connected pedestrian network. Despite some incidences of curb ramps or sidewalks that are missing or do not meet standards, overall, there is a wellconnected pedestrian network surrounding the site.

The proposed development will improve the overall pedestrian environment on site by improving pedestrian infrastructure at curb cuts for the site and providing open space on the north side of the site and between the buildings.

Residents of the site will have pedestrian access to/from the Woodley Park-Zoo/Adams Morgan Metrorail station from both buildings. Building A (the east building) will have pedestrian access directly via the 24th Street NW access. Building B (the west building) will have pedestrian access via the pedestrian path along the southern end of the Building A, which connects the internal courtyard to the 24th Street NW access. The courtyard will be open to residents of the site only and will not be used as a public pedestrian connection. The open space within the courtyard between the buildings will be recessed below grade to distinguish it as private space available to residents only. Pedestrian access to the Metrorail station for existing properties will not be impacted by the proposed project.

The site is expected to generate a manageable number of pedestrian trips, and the existing pedestrian facilities can accommodate these new trips.

Bicycle

The site has access to several on- and off-street bicycle facilities.

The site is expected to generate a manageable number of bicycle trips, and the existing bicycle facilities can accommodate these new trips.

The development will include long-term bicycle parking in the below-grade garage that exceeds zoning requirements and short-term bicycle parking along the perimeter of the site that meets DDOT and zoning requirements.

Vehicular

The site is accessible from principal arterial roadways such as Connecticut Avenue NW with nearby access to Massachusetts Avenue NW. These roadways provide connectivity to I-395 and the Capital Beltway (I-495) that surrounds Washington, DC and its inner suburbs in Virginia and Maryland, as well as to the District core. Minor arterials, such as Cleveland Avenue NW and Calvert Street NW, collectors, and local roads can be used to access the site directly.

In order to determine the project's impact on the transportation network, future conditions were analyzed with and without the development based on the number of trips the site is expected to generate. Intersection analyses were performed to obtain the average delay and queue a vehicle will experience. These average delays and queues were compared to the acceptable levels of delay set by DDOT standards as well as existing queues to determine if the project will negatively impact the study area.

The analysis concluded that no mitigation was required as the proposed development does not significantly impact the surrounding road networks.

Safety

A qualitative review of study area intersections was performed to identify areas of concern due to vehicular, pedestrian, and bicycle interactions.

The analysis concluded that no study intersections are considered hazardous/high crash intersections. However, based on a review of facilities in the area, one (1) intersection was identified for further evaluation to enhance the multi-modal network surrounding the site. The evaluation of these intersections is as follows:

Connecticut Avenue & Calvert Street, NW

While this intersection is not considered a hazardous/high crash intersection based on DDOT criteria, this location carries a high level of vehicle traffic and pedestrian activity and was identified based on a high concentration of vehicular crashes in the "Crashes in DC" database over the last three (3) years. Intersection geometry or operational changes are not recommended at this time as the site-generated traffic at this intersection is minimal and not expected to degrade safety.

Transportation Demand Management Plan

Per the DDOT CTR guidelines, the goal of TDM measures is to reduce the number of single occupancy vehicles and vehicle ownership within the District. The promotion of various programs and existing infrastructure includes maximizing the use of transit, bicycle, and pedestrian facilities. DDOT has outlined expectations for TDM measures in its CTR guidelines, and this project has proposed a robust TDM plan based on these guidelines. In addition to DDOT's standard TDM elements, the proposed TDM plan also includes the provisions from Subtitle C §707.3 (excluding the GAR provision), per DDOT's request.

Summary and Recommendations

This report concludes that the proposed development will have a manageable impact on the surrounding transportation and roadway network assuming that all planned site design elements are implemented.

The Wardman Park Redevelopment has several positive design elements that minimize potential transportation impacts, including:

• The site's close proximity to transit, particularly the Woodley Park-Zoo/Adams Morgan Metrorail station;

- The site's proximity to existing bicycle infrastructure, including the bicycle lanes on Calvert Street NW and Woodley Place NW and the Rock Creek Trail;
- The site being located in a well-connected pedestrian network, with access to the Woodley Park-Zoo/Adams Morgan Metrorail station from both proposed buildings;
- The inclusion of secure long-term bicycle parking that exceeds zoning requirements;
- The installation of short-term bicycle parking spaces along the perimeter of the site that meets zoning requirements;
- The improvement of remaining curb cuts along the site's perimeter, improving the existing pedestrian environment;
- The provision of a bicycle repair station in each long-term bicycle parking storage room.
- The Funding and installing of two (2) 19-dock Capital Bikeshare (CaBi) station with 12 bikes each and fund oneyear of maintenance and operations costs.
- The removal of an existing curb cut on Woodley Road NW; and
- A TDM plan that reduces the demand of singleoccupancy, private vehicles during peak period travel times or shifts single-occupancy vehicular demand to offpeak periods.